Reputation: 1430
How do I format a custom function to pass variables into an h2o function? I can't figure out the proper quo/expr/ensym syntax.
Here is a small example of the syntax that I can't figure out:
suppressMessages(library(h2o))
#> Warning: package 'h2o' was built under R version 3.6.2
suppressMessages(library(rlang))
h2o.init()
#> Connection successful!
data_h2o <- as.h2o(iris)
h2o.cor(data_h2o$Sepal.Length, data_h2o$Sepal.Width, use = "everything", method = "Pearson")
#> [1] -0.1175698
# function to take two variables and return the correlation
## in a larger data set I only care about how the target variable
## relates to the dependent variables
cor_function <- function(var1, var2) {
var_1 = deparse(substitute(var1))
var_2 = deparse(substitute(var2))
r = h2o::h2o.cor(data_h2o[[var_1]], data_h2o[[var_2]], use = "complete.obs", na.rm = TRUE, method = "spearman")
out <- tibble::enframe(r, name = NULL)
out$var1 = var_1
out$var2 = var_2
return(r)
}
# this works
cor_function(Sepal.Length, Sepal.Width)
#> [1] -0.1795433
params_to_run <- expand.grid(var1 = "Sepal.Length", var2 = c("Sepal.Width", "Petal.Width"))
suppressMessages(library(purrr))
purrr::map(params_to_run, cor_funtion)
#> Error in if ((nrow(x) == 1L || (ncol(x) == 1L && ncol(y) == 1L))) .eval.scalar(expr) else .fetch.data(expr, : missing value where TRUE/FALSE needed
Created on 2020-02-03 by the reprex package (v0.3.0)
This is similar to other questions w/o answers:
Upvotes: 2
Views: 568
Reputation: 3494
I think there are several problems here, the most important one is mixing tidy and standard evaluation. In cor_function(Sepal.Length, Sepal.Width)
, the arguments are passed as expressions, whereas the elements in params_to_run
are strings (or factors, actually).
Since I don't see that tidy evaluation is really necessary here, and map
ping over strings feels more natural, I propose a solution without tidy evaluation.
library("h2o")
library("purrr")
library("dplyr")
h2o.init()
data_h2o <- as.h2o(iris)
params_to_run <- expand.grid(var1 = "Sepal.Length", var2 = c("Sepal.Width", "Petal.Width"))
params_to_run
#> var1 var2
#> 1 Sepal.Length Sepal.Width
#> 2 Sepal.Length Petal.Width
cor_fun <- function(data, x, y, FUN, ...) {
# as.character() because expand.grid() produces factors
r <- FUN(x = data[, as.character(x)], y = data[, as.character(y)], ...)
return(r)
}
cor_fun(iris, "Sepal.Length", "Sepal.Width", cor)
#> [1] -0.1175698
cor_fun(data_h2o, "Sepal.Length", "Sepal.Width", h2o.cor)
#> [1] -0.1175698
mutate(params_to_run, res = map2(var1, var2, ~cor_fun(data_h2o, .x, .y, h2o.cor)))
#> var1 var2 res
#> 1 Sepal.Length Sepal.Width -0.1175698
#> 2 Sepal.Length Petal.Width 0.8179411
👆 Note also that params_to_run
is a data frame and you want to loop across rows. map()
would loop across columns (like lapply()
), so I use mutate()
to apply map()
to every row. Note further that cor_fun()
needs two arguments, so map2()
is used.
In the end, one may even do it without the custom function cor_fun()
:
mutate(params_to_run,
res = map2(var1, var2, ~h2o.cor(x = data_h2o[, as.character(.x)],
y = data_h2o[, as.character(.y)])))
#> var1 var2 res
#> 1 Sepal.Length Sepal.Width -0.1175698
#> 2 Sepal.Length Petal.Width 0.8179411
Below, you find a soluation with tidy eval. However, this won't work with params_to_run
, which contains strings (or factors, actually).
cor_fun2 <- function(data, x, y, FUN, ...) {
x <- rlang::enquo(x)
y <- rlang::enquo(y)
r <- FUN(x = data[, quo_name(x)], y = data[, quo_name(y)], ...)
return(r)
}
cor_fun2(data_h2o, Sepal.Length, Sepal.Width, h2o::h2o.cor)
#> [1] -0.1175698
Created on 2020-02-04 by the reprex package (v0.3.0)
Upvotes: 2