Reputation: 11
I've made a simple model in tf2 which multiplies the input 'a' by a variable 'b' (initialized to 1) and returns the output 'c'. I then try to train it on the simple dataset a=1, c=5. I expect it to learn b=5.
import tensorflow as tf
from tensorflow.keras.models import Model
a = Input(shape=(1,))
b = tf.Variable(1., trainable=True)
c = a*b
model = Model(a,c)
loss = tf.keras.losses.MeanAbsoluteError()
model.compile(optimizer='adam', loss=loss)
model.fit([1.],[5.],batch_size=1, epochs=1)
However, tf2 does not see the variable 'b' as being trainable. The summary shows no trainable parameters.
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 1)] 0
_________________________________________________________________
tf_op_layer_mul (TensorFlowO [(None, 1)] 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
Why is the variable 'b' not training?
Upvotes: 1
Views: 1854
Reputation: 2642
Keras model is wrapper around Layer class. You'll have to wrap this variable as keras layer in order to show this as trainable parameter in model.
You can create a tiny custom layer for that like this:
class MyLayer(tf.keras.layers.Layer):
def __init__(self):
super(MyLayer, self).__init__()
#your variable goes here
self.variable = tf.Variable(1., trainable=True, dtype=tf.float64)
def call(self, inputs, **kwargs):
# your mul operation goes here
x = inputs * self.variable
return x
Here call
method will do multiplication operation. We can use this layer just like any other layer in out model. Here I am creating a Sequential model adding aboce multiplication operation as a model layer.
model = tf.keras.models.Sequential()
mylayer_object = MyLayer()
model.add(mylayer_object)
loss = tf.keras.losses.MeanAbsoluteError()
model.compile("adam", loss)
model.fit([1.],[5.],batch_size=1, epochs=1)
model.summary()
'''
Train on 1 samples
1/1 [==============================] - 0s 426ms/sample - loss: 4.0000
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my_layer (MyLayer) multiple 1
=================================================================
Total params: 1
Trainable params: 1
Non-trainable params: 0
_________________________________________________________________
'''
After this if you can list out model's trainable parameters.
print(model.trainable_variables)
# [<tf.Variable 'Variable:0' shape=() dtype=float64, numpy=1.0009999968852092>]
Upvotes: 1