Reputation: 27
I am trying to get rolling means for many columns at once, but I am running into difficulty because my grouping variables are not numeric.
If I were to do a rolling mean for one column at a time, my code should look something like this :
NHLReg2<-arrange(NHLReg2,season,team,gameId) %>% group_by(season,team)%>% mutate(xGF= rollapply(xGoalsFor, list( seq(21)), sum, partial = TRUE, fill = NA))
I have attempted to use dplyr in order to do many columns at the same time:
NHLPP3<-arrange(NHLPP2,season,team,gameId) %>%
group_by(season,team)%>%
select(c(1,2,11:112)) %>%
lapply(function(x){ if(class(x) == "numeric"){
rollapply(x, width=list(-seq(21)), FUN=function(x){sum(x,
na.rm=T)},partial = T, fill = NA)
}else{
return(x)
}
})%>% as.data.frame()
This does solve the problem of ignoring the character/grouping variables for the rollapply, but it causes the groupby statement to have no effect. I have left some sample data below, pretend v1 and v2 are the grouping variables and v3 and v4 are the columns of interest to calculate a rolling mean.
v1<-c('a','a','a','a','a','a','a','a','b','b','b','b','b','b','b')
v2<-c('2010','2010','2010','2010','2010','2010','2010','2010','2020','2020','2020','2020','2020','2020','2020')
v3<-c(1,2,3,4,1,4,5,6,13,5,6,13,4,65,8)
v4<-c(6,13,5,6,13,4,65,8,1,2,3,4,1,4,5)
Data<-as.data.frame(t(rbind(v1,v2,v3,v4)))
Thank you.
Upvotes: 0
Views: 1087
Reputation: 269654
Data
, as defined in the question, has no numeric columns. It is all factors. We fix the definition below. Then we use mutate_at
to just apply rollapplyr
to the non-grouping columns. So that we can use Data
, we roll the sum over the prior 3 values rather than the prior 21. An alternative to the mutate_at
line would be mutate_if(is.numeric, ~ rollapplyr(...same...))
.
library(dplyr)
library(zoo)
Data <- data.frame(v1, v2, v3, v4) # v1, v2, v3, v4 are from question
Data %>%
group_by(v1, v2) %>%
mutate_at(vars(-group_cols()),
~ rollapplyr(.x, list(-seq(3)), sum, na.rm = FALSE, partial = TRUE, fill = NA)) %>%
ungroup
giving:
# A tibble: 15 x 4
v1 v2 v3 v4
<fct> <fct> <dbl> <dbl>
1 a 2010 NA NA
2 a 2010 1 6
3 a 2010 3 19
4 a 2010 6 24
5 a 2010 9 24
6 a 2010 8 24
7 a 2010 9 23
8 a 2010 10 82
9 b 2020 NA NA
10 b 2020 13 1
11 b 2020 18 3
12 b 2020 24 6
13 b 2020 24 9
14 b 2020 23 8
15 b 2020 82 9
Upvotes: 3