Reputation: 2605
I have a dataframe with a date column:
data['Date']
0 1/1/14
1 1/8/14
2 1/15/14
3 1/22/14
4 1/29/14
...
255 11/21/18
256 11/28/18
257 12/5/18
258 12/12/18
259 12/19/18
But, when I try to get the max date out of that column, I get:
test_data.Date.max()
'9/9/15'
Any idea why this would happen?
Upvotes: 1
Views: 2637
Reputation: 151
Your date may be stored as a string. First convert the column from string to datetime. Then, max() should work.
test = pd.DataFrame(['1/1/2010', '2/1/2011', '3/4/2020'], columns=['Dates'])
Dates
0 1/1/2010
1 2/1/2011
2 3/4/2020
pd.to_datetime(test['Dates'], format='%m/%d/%Y').max()
Timestamp('2020-03-04 00:00:00')
That timestamp can be cleaned up using .dt.date:
pd.to_datetime(test['Dates'], format='%m/%d/%Y').dt.date.max()
datetime.date(2020, 3, 4)
to_datetime format argument table python docs
pandas to_datetime pandas docs
Upvotes: 0
Reputation: 1
The .max()
understands it as a date (like you want), if it is a datetime object. Building upon Seshadri's response, try:
type(data['Date'][1])
If it is a datetime object, this returns this:
pandas._libs.tslibs.timestamps.Timestamp
If not, you can make that column a datatime object like so:
data['Date'] = pd.to_datetime(data['Date'],format='%m/%d/%y')
The format argument makes sure you get the right formatting. See the full list of formatting options here in the python docs.
Upvotes: 0
Reputation: 18367
Clearly the column is of type object
. You should try using pd.to_datetime()
and then performing the max()
aggregator:
data['Date'] = pd.to_datetime(data['Date'],errors='coerce') #You might need to pass format
print(data['Date'].max())
Upvotes: 3