Reputation: 31
Suppose I have two datasets, A and B. For dataset A, it has ID, date and Interest. For dataset B, it has ID, date_1, date_2, Int. If date in dataset A is within the range of date_1 and date_2 in dataset B; then I want to extract the value Int in B to the column Interest in A. Here is the sample code that I run. But got error message of
"Error in if (subset_A[j, ]$date >= subset_B[k, ]$date_1 & subset_A[j, :
argument is of length zero"
.
A <- data.frame("ID" = c(1,1,1,2,2,3), "date" = c("1900-01-01","1900-11-01","1902-01-01","1903-01-01","1905-01-01","1900-01-01"), "Interest" = c(NA,NA,NA,NA,NA,NA), stringsAsFactors = FALSE)
A$date<-as.Date(A$date)
B <- data.frame("ID" = c(1,1,2,2,2,5),
"date_1" = c("1900-01-01","1900-02-01","1900-01-01","1901-02-01","1901-03-01","1900-01-01"),
"date_2" = c("1900-01-03","1903-01-01","1901-01-01","1901-03-01","1904-03-01","1903-01-01"),
"Int" = c(1,2,1,3,3,1))
B$date_1 <- as.Date(B$date_1)
B$date_2 <- as.Date(B$date_2)
In R:
IDlist = unique(A$ID)
Table=NULL
for (i in 1:length(IDlist)){
subset_B <-subset(B, ID == IDlist[i])
subset_A <-subset(A, ID == IDlist[i])
for (j in 1:nrow(subset_A)){
for (k in 1:nrow(subset_B)){
if(subset_A[j,]$date >= subset_B[k,]$date_1&
subset_A[j,]$date <= subset_B[k,]$date_2&
!is.na(subset_B[k,]$date_1) &
!is.na(subset_B[k,]$date_2))
subset_A[j,]$Interest <- subset_B[k,]$Int
Table=rbind(Table,
subset_A)
}
}
}
I want to get the data frame A with last column inputed as c(1,2,2,3,NA,NA). Not sure why the for loop is not working.Thank you!
Upvotes: 2
Views: 86
Reputation: 269654
1) Using SQL this can be expressed directly:
library(sqldf)
sqldf("select A.*, B.Int from A
left join B on A.ID = B.ID and A.date between B.date_1 and B.date_2")
giving:
ID date Interest Int
1 1 1900-01-01 NA 1
2 1 1900-11-01 NA 2
3 1 1902-01-01 NA 2
4 2 1903-01-01 NA 3
5 2 1905-01-01 NA NA
6 3 1900-01-01 NA NA
2) If you really want to use a loop then loop through the rows of A and for each one grab the corresponding element in B:
Table <- A
for(i in 1:nrow(A)) {
ix <- which(A$ID[i] == B$ID & A$date[i] >= B$date_1 & A$date[i] <= B$date_2)[1]
Table$Int[i] <- B$Int[ix]
}
Table
giving:
ID date Interest Int
1 1 1900-01-01 NA 1
2 1 1900-11-01 NA 2
3 1 1902-01-01 NA 2
4 2 1903-01-01 NA 3
5 2 1905-01-01 NA NA
6 3 1900-01-01 NA NA
Upvotes: 3
Reputation: 42544
With data.table
's non-equi join and update in a join this becomes
library(data.table)
setDT(A)[, Interest := NULL][
setDT(B), on = .(ID, date >= date_1, date <= date_2), Interest := Int][]
ID date Interest 1: 1 1900-01-01 1 2: 1 1900-11-01 2 3: 1 1902-01-01 2 4: 2 1903-01-01 3 5: 2 1905-01-01 NA 6: 3 1900-01-01 NA
Note that the Interest
column had to be removed from A
before the update join because it was initialized with NA
which is of type logical while the replacement values are of type double and a vector column can hold data of one type only.
Upvotes: 5
Reputation: 887153
We can use fuzzyjoin
library(fuzzyjoin)
library(dplyr)
fuzzy_left_join(A, B, by = c('ID', 'date' = 'date_1', 'date' = 'date_2'),
match_fun = list(`==`, `>=`, `<=`)) %>%
transmute(ID = ID.x, date, Interest = Int)
# ID date Interest
#1 1 1900-01-01 1
#2 1 1900-11-01 2
#3 1 1902-01-01 2
#4 2 1903-01-01 3
#5 2 1905-01-01 NA
#6 3 1900-01-01 NA
Upvotes: 2