Reputation: 53
I want to replace values in columns using if loop:
If value in column [D] is not same as any values in [A,B,C] then replace column with first NaN with D, and if there is no NaN in a row, create a new column [E] and add value from column [D] in column [E].
ID A B C D
0 22 32 NaN 22
1 25 13 NaN 15
2 27 NaN NaN 20
3 29 10 16 29
4 12 92 33 55
I want output to be:
ID A B C D E
0 22 32 NaN 22
1 25 13 15 15
2 27 20 NaN 20
3 29 10 16 29
4 12 92 33 55 55
Upvotes: 0
Views: 202
Reputation: 8033
You can do it this way
a = df.isnull()
b = (a[a.any(axis=1)].idxmax(axis=1))
nanindex = b.index
check = (df.A!=df.D) & (df.B!=df.D) & (df.C!=df.D)
commonind = check[~check].index
replace_ind_list = list(nanindex.difference(commonind))
new_col_list = df.index.difference(list(set(commonind.tolist()+nanindex.tolist()))).tolist()
df['E']=''
for index, row in df.iterrows():
for val in new_col_list:
if index == val:
df.at[index,'E'] = df['D'][index]
for val in replace_ind_list:
if index == val:
df.at[index,b[val]] = df['D'][index]
df
Output
ID A B C D E
0 0 22 32.0 NaN 22
1 1 25 13.0 15.0 15
2 2 27 20.0 NaN 20
3 3 29 10.0 16.0 29
4 4 12 92.0 33.0 55 55
Upvotes: 1
Reputation: 66
List = [[22 , 32 , None , 22],
[25 , 13 , None , 15],
[27 , None , None , 20],
[29 , 10 , 16 , 29],
[12 , 92 , 33 , 55]]
for Row in List:
Target_C = Row[3]
if Row.count(Target_C) < 2: # If there is no similar condetion pass
None_Found = False # Small bool to check later if there is no None !
for enumerate_Column in enumerate(Row): # get index for each list
if(None in enumerate_Column): # if there is None gin the row
Row[enumerate_Column[0]] = Target_C # replace None with column D
None_Found = True # Change None_Found to True
if(None_Found): # Break the loop if found None
break
if(None_Found == False): # if you dont found None add new clulmn
Row.append(Target_C)
Upvotes: 1