Reputation: 233
I am trying to evaluate the effectiveness of different units in a tabletop game (Mantic's Deadzone, for anyone who is interested) that uses exploding eight-sided dice (D8). For example, a player rolls 3D8
; for each die that shows an 8
, the player is allowed to roll an additional D8
, and can continue to do so ad infinity.
Not being a mathematician, I decided on a brute-force approach, and have created a recursive function in C# that writes all the possible combinations of dice rolls (up to a certain number of additional dice - represented by the max_generations variable -, after which the probabilities become too small to be significant).
class Program
{
private int dice_faces = 8;
private int max_generations = 5;
static void Main(string[] args)
{
new Program().GenerateRoll(new List<int>() { 1 });
}
private List<int> GenerateRoll(List<int> dice)
{
if (dice == null || dice.Count == 0)
return new List<int>();
if (dice[dice.Count - 1] == dice_faces)
{
if (dice.Count < max_generations)
{
dice.Add(1);
}
else
{
Console.WriteLine(string.Join(" ", dice));
dice = null;
}
}
else
{
Console.WriteLine(string.Join(" ", dice));
dice[dice.Count - 1]++;
}
return GenerateRoll(dice);
}
}
This function works well when starting with a single dice as in the example above, but it does not generate the full range of possible rolls when starting with multiple dice (i.e. new Program().GenerateRoll(new List<int>() { 1, 1, 1 }););
it only shows the rolls for the last dice in the list.
I would be grateful for any assistance with updating the function to work with any number of starting dice.
edited to include sample expected output (showing generations of exploding dice)
2 dice, 3 faces, 4 generations
1 G1, 1 G1
1 G1, 2 G1
1 G1, 3 G1, 1 G2
1 G1, 3 G1, 2 G2
1 G1, 3 G1, 3 G2, 1 G3
1 G1, 3 G1, 3 G2, 2 G3
1 G1, 3 G1, 3 G2, 3 G3, 1 G4
1 G1, 3 G1, 3 G2, 3 G3, 2 G4
1 G1, 3 G1, 3 G2, 3 G3, 3 G4 # max generation reached
2 G1, 1 G1
2 G1, 2 G1
2 G1, 3 G1, 1 G2
2 G1, 3 G1, 2 G2
2 G1, 3 G1, 3 G2, 1 G3
2 G1, 3 G1, 3 G2, 2 G3
2 G1, 3 G1, 3 G2, 3 G3, 1 G4
2 G1, 3 G1, 3 G2, 3 G3, 2 G4
2 G1, 3 G1, 3 G2, 3 G3, 3 G4 # max generation reached
3 G1, 1 G1, 1 G2
3 G1, 1 G1, 2 G2
3 G1, 1 G1, 3 G2, 1 G3
3 G1, 1 G1, 3 G2, 2 G3
3 G1, 1 G1, 3 G2, 3 G3, 1 G4
3 G1, 1 G1, 3 G2, 3 G3, 2 G4
3 G1, 1 G1, 3 G2, 3 G3, 3 G4 # max generation reached
3 G1, 2 G1, 1 G2
3 G1, 2 G1, 2 G2
3 G1, 2 G1, 3 G2, 1 G3
3 G1, 2 G1, 3 G2, 2 G3
3 G1, 2 G1, 3 G2, 3 G3, 1 G4
3 G1, 2 G1, 3 G2, 3 G3, 2 G4
3 G1, 2 G1, 3 G2, 3 G3, 3 G4 # max generation reached
3 G1, 3 G1, 1 G2, 1 G2
3 G1, 3 G1, 1 G2, 2 G2
3 G1, 3 G1, 1 G2, 3 G2, 1 G3
3 G1, 3 G1, 1 G2, 3 G2, 2 G3
3 G1, 3 G1, 1 G2, 3 G2, 3 G3, 1 G4
3 G1, 3 G1, 1 G2, 3 G2, 3 G3, 2 G4
3 G1, 3 G1, 1 G2, 3 G2, 3 G3, 3 G4 # max generation reached
3 G1, 3 G1, 2 G2, 1 G2
3 G1, 3 G1, 2 G2, 2 G2
3 G1, 3 G1, 2 G2, 3 G2, 1 G3
3 G1, 3 G1, 2 G2, 3 G2, 2 G3
3 G1, 3 G1, 2 G2, 3 G2, 3 G3, 1 G4
3 G1, 3 G1, 2 G2, 3 G2, 3 G3, 2 G4
3 G1, 3 G1, 2 G2, 3 G2, 3 G3, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 1 G3, 1 G3
3 G1, 3 G1, 3 G2, 3 G2, 1 G3, 2 G3
3 G1, 3 G1, 3 G2, 3 G2, 1 G3, 3 G3, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 1 G3, 3 G3, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 1 G3, 3 G3, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 2 G3, 1 G3
3 G1, 3 G1, 3 G2, 3 G2, 2 G3, 2 G3
3 G1, 3 G1, 3 G2, 3 G2, 2 G3, 3 G3, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 2 G3, 3 G3, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 2 G3, 3 G3, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 1 G3, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 1 G3, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 1 G3, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 2 G3, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 2 G3, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 2 G3, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 1 G4, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 1 G4, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 1 G4, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 2 G4, 1 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 2 G4, 2 G4
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 2 G4, 3 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 3 G4, 1 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 3 G4, 2 G4 # max generation reached
3 G1, 3 G1, 3 G2, 3 G2, 3 G3, 3 G3, 3 G4, 3 G4 # max generation reached
Upvotes: 0
Views: 275
Reputation: 186803
Well, let's start from the generator without explosion, it's quite easy:
private static IEnumerable<int[]> Generator(int faces, int count) {
int[] state = Enumerable.Repeat(1, count).ToArray();
do {
yield return state.ToArray(); // safety : let's return a copy of state
for (int i = state.Length - 1; i >= 0; --i)
if (state[i] == faces)
state[i] = 1;
else {
state[i] += 1;
break;
}
}
while (!state.All(item => item == 1));
}
Now, let's use the generator above to create the generator with explosion:
private static IEnumerable<int[]> Generator(int faces, int count, int extra) {
IEnumerable<(int[], int)> agenda = Generator(faces, count)
.Select(state => (state, 0));
for (bool hasWork = true; hasWork; ) {
hasWork = false;
List<(int[], int)> next = new List<(int[], int)>();
foreach (var state in agenda) {
int explosions = Math.Min(
state.Item1.Skip(state.Item2).Count(item => item == faces),
extra - state.Item1.Length + count);
if (explosions <= 0)
yield return state.Item1;
else
foreach (var newState in
Generator(faces, explosions).Select(adds => state.Item1.Concat(adds)))
next.Add((newState.ToArray(), state.Item1.Length));
}
agenda = next;
hasWork = next.Count > 0;
}
}
Demo:
// 2 dice (3 faces each) with at most 4 explosions (extra dice) allowed
var results = string.Join(Environment.NewLine, Generator(3, 2, 4)
.Select(item => string.Join(", ", item)));
Console.Write(results);
Outcome:
1, 1 # No explosion
1, 2
2, 1
2, 2
1, 3, 1 # last 3 exploded
1, 3, 2
2, 3, 1
2, 3, 2
3, 1, 1 # first 3 exploded
3, 1, 2
3, 2, 1
3, 2, 2
3, 3, 1, 1 # both first and last 3 exploded
3, 3, 1, 2
3, 3, 2, 1
3, 3, 2, 2
1, 3, 3, 1 # last 3 exploded, we have 3 which we exploded again
1, 3, 3, 2
2, 3, 3, 1
2, 3, 3, 2
3, 1, 3, 1 # first 3 exploded, we have 3 which we exploded again
3, 1, 3, 2
3, 2, 3, 1
3, 2, 3, 2
3, 3, 1, 3, 1 # both first and last 3 exploded, we have 3 which we exploded again
3, 3, 1, 3, 2
3, 3, 2, 3, 1
3, 3, 2, 3, 2
3, 3, 3, 1, 1
3, 3, 3, 1, 2
3, 3, 3, 2, 1
3, 3, 3, 2, 2
3, 3, 3, 3, 1, 1
3, 3, 3, 3, 1, 2
3, 3, 3, 3, 1, 3
3, 3, 3, 3, 2, 1
3, 3, 3, 3, 2, 2
3, 3, 3, 3, 2, 3
3, 3, 3, 3, 3, 1
3, 3, 3, 3, 3, 2
3, 3, 3, 3, 3, 3
1, 3, 3, 3, 1
1, 3, 3, 3, 2
2, 3, 3, 3, 1
2, 3, 3, 3, 2
3, 1, 3, 3, 1
3, 1, 3, 3, 2
3, 2, 3, 3, 1
3, 2, 3, 3, 2
3, 3, 1, 3, 3, 1
3, 3, 1, 3, 3, 2
3, 3, 1, 3, 3, 3
3, 3, 2, 3, 3, 1
3, 3, 2, 3, 3, 2
3, 3, 2, 3, 3, 3
3, 3, 3, 1, 3, 1
3, 3, 3, 1, 3, 2
3, 3, 3, 1, 3, 3
3, 3, 3, 2, 3, 1
3, 3, 3, 2, 3, 2
3, 3, 3, 2, 3, 3
1, 3, 3, 3, 3, 1
1, 3, 3, 3, 3, 2
1, 3, 3, 3, 3, 3
2, 3, 3, 3, 3, 1
2, 3, 3, 3, 3, 2
2, 3, 3, 3, 3, 3
3, 1, 3, 3, 3, 1
3, 1, 3, 3, 3, 2
3, 1, 3, 3, 3, 3
3, 2, 3, 3, 3, 1
3, 2, 3, 3, 3, 2
3, 2, 3, 3, 3, 3
Edit: If you want to get / track generations (or explosions) you can implement extra methods:
private static int[] Explosions(int[] record, int faces, int count) {
int[] result = new int[record.Length];
int extra = count;
int startAt = count;
int completed = 0;
int generation = 0;
while (true) {
generation += 1;
int take = extra;
extra = record
.Skip(completed)
.Take(take)
.Count(item => item == faces);
if (extra <= 0)
break;
for (int i = 0; i < extra; ++i)
if (startAt + i >= result.Length)
return result;
else
result[startAt + i] = generation;
startAt += extra;
completed += take;
}
return result;
}
Let's have some readable text:
private static String Explain(int[] record, int faces, int count) {
return string.Join(" then ", record
.Zip(Explosions(record, faces, count), (item, rank) => new { item, rank})
.GroupBy(value => value.rank, value => value.item)
.Select(group => $"explosion #{group.Key} ({string.Join(", ", group)})"));
}
Demo:
Console.WriteLine(string.Join(", ",
new int[] { 3, 3, 3, 3, 1, 3, 2 }));
// We have 2 dice with 3 faces each;
// We want to explain 3, 3, 3, 3, 1, 3, 2 sequence
Console.WriteLine(string.Join(", ", Explosions(
new int[] { 3, 3, 3, 3, 1, 3, 2 }, 3, 2)));
Console.WriteLine();
Console.Write(Explain(new int[] { 3, 3, 3, 3, 1, 3, 2 }, 3, 2));
Outcome:
3, 3, 3, 3, 1, 3, 2 # Initial serie
0, 0, 1, 1, 2, 2, 3 # Corresponding explosions (generations)
explosion #0 (3, 3) then explosion #1 (3, 3) then explosion #2 (1, 3) then explosion #3 (2)
Edit 2: Finally, if you want to restrict not extra
dice, but generations
(0
- initial cast only, at most 1
explosion whatever dice it is etc.):
private static IEnumerable<int[]> Generator(int faces, int count, int generations) {
IEnumerable<(int[], int, int)> agenda = Generator(faces, count)
.Select(state => (state, 0, 0));
for (bool hasWork = true; hasWork;) {
hasWork = false;
List<(int[], int, int)> next = new List<(int[], int, int)>();
foreach (var state in agenda) {
int explosions = state.Item1.Skip(state.Item2).Count(item => item == faces);
if (explosions <= 0 || state.Item3 >= generations)
yield return state.Item1;
else
foreach (var newState in
Generator(faces, explosions).Select(adds => state.Item1.Concat(adds)))
next.Add((newState.ToArray(), state.Item1.Length, state.Item3 + 1));
}
agenda = next;
hasWork = next.Count > 0;
}
}
Upvotes: 1
Reputation: 12687
To reduce the problem, we will have all possible dice rolls be represented by an encoding from
0
(roll only ones) to faces ^ dies - 1
(roll all eights).
E.g., for two 8-sided dies (0 to 63).
We then just convert every encoded to a new base of faces
(base 8 for 8-sided dies)
IEnumerable<int[]> GenerateRoll(int dies, int dice_faces)
{
var allFaces = Enumerable.Range(1, dice_faces).ToArray();
var allOnes = Enumerable.Repeat(1, dies);
var count = (int)Math.Pow(dice_faces, dies);
return
Enumerable.Range(0, count)
.Select(roll => ToBaseX(roll, dice_faces, allFaces, allOnes.ToArray()));
}
int[] ToBaseX(long value, int baseValue, int[] target, int[] buffer)
{
var i = buffer.Length;
do
{
buffer[--i] = target[value % baseValue];
value = value / baseValue;
}
while (value > 0);
return buffer;
}
Well, that wasn't too bad.
Now if we want exploding dies, we choose to generate a new roll sequence of 1 die roll for every exploding die present (the Where
condition)
IEnumerable<(int gen, int value)[]> GenerateRoll(int dies, int faces, int max_generations, int gen = 1)
{
if (max_generations == gen)
return Enumerable.Empty<(int, int)[]>();
var allFaces = Enumerable.Range(1, faces).ToArray();
var allOnes = Enumerable.Repeat(1, dies);
return
Enumerable.Range(0, (int)Math.Pow(faces, dies))
.Select(roll => ToBaseX(roll, faces, allFaces, allOnes.ToArray()))
.Select(roll => roll.Select(value => (gen, value)).ToArray())
.SelectMany(roll =>
{
var explosions = roll.Count(r => r.value == faces);
if (explosions == 0)
return new[] { roll };
return GenerateRoll(explosions, faces, max_generations, gen + 1) //roll explosion dies
.Select(last => roll.Concat(last).ToArray()); //the new roll gets appended to the streak
});
}
Test program
static void Main(string[] args)
{
foreach (var roll in new Program().GenerateRoll(dies: 2, faces: 3, max_generations: 4))
{
Console.WriteLine(String.Join(", ", roll.Select(v => $"G{v.gen} {v.value}")));
}
Console.ReadKey();
}
Output
G1 1, G1 1
G1 1, G1 2
G1 1, G1 3, G2 1
G1 1, G1 3, G2 2
G1 1, G1 3, G2 3, G3 1
G1 1, G1 3, G2 3, G3 2
G1 2, G1 1
G1 2, G1 2
G1 2, G1 3, G2 1
G1 2, G1 3, G2 2
G1 2, G1 3, G2 3, G3 1
G1 2, G1 3, G2 3, G3 2
G1 3, G1 1, G2 1
G1 3, G1 1, G2 2
G1 3, G1 1, G2 3, G3 1
G1 3, G1 1, G2 3, G3 2
G1 3, G1 2, G2 1
G1 3, G1 2, G2 2
G1 3, G1 2, G2 3, G3 1
G1 3, G1 2, G2 3, G3 2
G1 3, G1 3, G2 1, G2 1
G1 3, G1 3, G2 1, G2 2
G1 3, G1 3, G2 1, G2 3, G3 1
G1 3, G1 3, G2 1, G2 3, G3 2
G1 3, G1 3, G2 2, G2 1
G1 3, G1 3, G2 2, G2 2
G1 3, G1 3, G2 2, G2 3, G3 1
G1 3, G1 3, G2 2, G2 3, G3 2
G1 3, G1 3, G2 3, G2 1, G3 1
G1 3, G1 3, G2 3, G2 1, G3 2
G1 3, G1 3, G2 3, G2 2, G3 1
G1 3, G1 3, G2 3, G2 2, G3 2
G1 3, G1 3, G2 3, G2 3, G3 1, G3 1
G1 3, G1 3, G2 3, G2 3, G3 1, G3 2
G1 3, G1 3, G2 3, G2 3, G3 2, G3 1
G1 3, G1 3, G2 3, G2 3, G3 2, G3 2
Upvotes: 1