Burhanuddin Samiwala
Burhanuddin Samiwala

Reputation: 11

How to get mean RGB value of multiple objects (for eg. lentil seeds) in an image using OpenCV

The image I have used consists of a coin placed on the leftmost part that is used for pixel_per_metric parameter and there consists of 5 lentil seeds placed to the right of it which are roughly circular in shape and they are yellow in colour. I'm not able to get the individual mean RGB value of each lentil seed.

This code allows me to calculate the size of the seeds but not the mean rgb value of each seed

Please suggest some changes to this code so that I can calculate the Mean RGB value of each individual seed.

On the internet people are suggesting to create a mask that can do this but I'm not sure how to do that to get the RGB value. The expected output would just be getting the size of all the objects as well as getting the mean RGB or BGR value of all the objects.

The width parameter is just the width of a coin which can be taken as 2.4 (cm)

Image link is below

https://drive.google.com/file/d/16ktHYpy-YcOFnHrcZ1E13AwzJiC2bxZt/view?usp=drivesdk

Thanks in advance

My code:

# import the necessary packages
from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
import numpy as np
import argparse
import imutils
import cv2

def midpoint(ptA, ptB):
    return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to the input image")
ap.add_argument("-w", "--width", type=float, required=True,
    help="width of the left-most object in the image (in cm)")
args = vars(ap.parse_args())

# load the image, convert it to grayscale, and blur it slightly
image = cv2.imread(args["image"])
image4 = cv2.imread(args["image"])
image=cv2.resize(image,(900,1200))
hsv = cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

# Range for lower red (if the seed was red) 
lower_red = np.array([8,120,70])
upper_red = np.array([35,255,255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
#cv2.imshow('color',mask1)

res = cv2.bitwise_and(image,image,mask = mask1)
cv2.imshow('res',res)
gray2 = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
gray2 = cv2.GaussianBlur(gray2, (7, 7), 0)

# perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges
edged = cv2.Canny(gray2, 50, 100)
edged = cv2.dilate(edged, None, iterations=1)
edged = cv2.erode(edged, None, iterations=1)

# find contours in the edge map
cnts2 = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
    cv2.CHAIN_APPROX_SIMPLE)
cnts2 = imutils.grab_contours(cnts2)
cv2.drawContours(res,cnts2,-1,(0,255,0))
#cv2.imshow('contours asli part2',res)
#cv2.waitKey(0)


gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)

# perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges
edged1 = cv2.Canny(gray, 50, 100)
edged2 = cv2.dilate(edged1, None, iterations=1)
edged3 = cv2.erode(edged2, None, iterations=1)

# find contours in the edge map
cnts = cv2.findContours(edged3.copy(), cv2.RETR_EXTERNAL,
    cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cv2.drawContours(image,cnts,-1,(0,255,0))
#cv2.imshow('contours asli',image)
#cv2.waitKey(0)


# sort the contours from left-to-right and initialize the
# 'pixels per metric' calibration variable
(cnts, _) = contours.sort_contours(cnts)
pixelsPerMetric = None


# loop over the contours individually
for c in cnts:
    # if the contour is not sufficiently large, ignore it
    if cv2.contourArea(c) < 100:
        continue

    # compute the rotated bounding box of the contour
    orig = image.copy()
    box = cv2.minAreaRect(c)
    box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
    box = np.array(box, dtype="int")

    # order the points in the contour such that they appear
    # in top-left, top-right, bottom-right, and bottom-left
    # order, then draw the outline of the rotated bounding
    # box
    box = perspective.order_points(box)
    cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)


    # loop over the original points and draw them
    for (x, y) in box:
        cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)

    # unpack the ordered bounding box, then compute the midpoint
    # between the top-left and top-right coordinates, followed by
    # the midpoint between bottom-left and bottom-right coordinates
    (tl, tr, br, bl) = box
    (tltrX, tltrY) = midpoint(tl, tr)
    (blbrX, blbrY) = midpoint(bl, br)

    # compute the midpoint between the top-left and top-right points,
    # followed by the midpoint between the top-righ and bottom-right
    (tlblX, tlblY) = midpoint(tl, bl)
    (trbrX, trbrY) = midpoint(tr, br)

    # draw the midpoints on the image
    cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
    cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
    cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
    cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)

    # draw lines between the midpoints
    cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
        (255, 0, 255), 2)
    cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
        (255, 0, 255), 2)

    # compute the Euclidean distance between the midpoints
    dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
    dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))

    # if the pixels per metric has not been initialized, then
    # compute it as the ratio of pixels to supplied metric
    # (in this case, inches)
    if pixelsPerMetric is None:
        pixelsPerMetric = dB / args["width"]

    # compute the size of the object
    dimA = dA / pixelsPerMetric
    dimB = dB / pixelsPerMetric

    # draw the object sizes on the image
    cv2.putText(orig, "{:.1f}cm".format(dimA),
        (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
        0.65, (255, 255, 255), 2)
    cv2.putText(orig, "{:.1f}cm".format(dimB),
        (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
        0.65, (255, 255, 255), 2)

    #show the output image
    cv2.imshow("Image", orig)
    cv2.waitKey(0)

Upvotes: 0

Views: 531

Answers (1)

Raviteja Narra
Raviteja Narra

Reputation: 456

The following method takes 2 arguments.

def getMean(contour, img):
    #First parameter is the contour iside which the mean has to be calculated
    #Second parameter is the color image. Assuming 3 channels
    #Create a mask image representing the currently selected contour
    maskImage = np.zeros((img.shape[0], img.shape[1])).astype(np.uint8)
    cv2.drawContours(maskImage, [c],-1,1,-1)
    #get the RGB value of mean of the img inside the mask
    meanColor = np.array(cv2.mean(img, mask=maskImage)).astype(np.uint8)
    #create a temp image that has the average RGB color in mask and 0 elsewhere
    tempImage = np.zeros(image.shape).astype(np.uint8)
    tempImage[maskImage == 1] = meanColor[0:3]
    cv2.imshow("mask", tempImage)
    cv2.waitKey(0)

Upvotes: 2

Related Questions