Reputation: 375
I'm trying in vain to use a Pyspark substring function inside of an UDF. Below is my code snippet -
from pyspark.sql.functions import substring
def my_udf(my_str):
try:
my_sub_str = substring(my_str,1, 2)
except Exception:
pass
else:
return (my_sub_str)
apply_my_udf = udf(my_udf)
df = input_data.withColumn("sub_str", apply_my_udf(input_data.col0))
The sample data is-
ABC1234
DEF2345
GHI3456
But when I print the df, I don't get any value in the new column "sub_str" as shown below -
[Row(col0='ABC1234', sub_str=None), Row(col0='DEF2345', sub_str=None), Row(col0='GHI3456', sub_str=None)]
Can anyone please let me know what I'm doing wrong?
Upvotes: 0
Views: 941
Reputation: 1530
If you need to use udf
for that, you could also try something like:
input_data = spark.createDataFrame([
(1,"ABC1234"),
(2,"DEF2345"),
(3,"GHI3456")
], ("id","col0"))
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
udf1 = udf(lambda x:x[0:2],StringType())
df.withColumn('sub_str',udf1('col0')).show()
+---+-------+-------+
| id| col0|sub_str|
+---+-------+-------+
| 1|ABC1234| AB|
| 2|DEF2345| DE|
| 3|GHI3456| GH|
+---+-------+-------+
However, as Mohamed Ali JAMAOUI wrote - you could do without udf easily here.
Upvotes: 1
Reputation: 14699
You don't need a udf
to use substring
, here's a cleaner and faster way:
>>> from pyspark.sql import functions as f
>>> df.show()
+-------+
| data|
+-------+
|ABC1234|
|DEF2345|
|GHI3456|
+-------+
>>> df.withColumn("sub_str", f.substring("data", 1, 2)).show()
+-------+-------+
| data|sub_str|
+-------+-------+
|ABC1234| AB|
|DEF2345| DE|
|GHI3456| GH|
+-------+-------+
Upvotes: 1