Reputation: 185
I've created a basic tinker canva where the user is able to paint using a brush. I store all the x and y coordinates of the drawn lines in an array and then I resize them to 28x28 pixel (the size of dataset's images); somehow can I convert that array to a numpy array like the MNIST dataset (a tensorflow dataset) ?
This is an example of that dataset (every number represents the color on the rgb scale):
[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 84 185 159 151 60 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 222 254 254 254 254 241 198 198 198 198 198 198 198 198 170 52 0 0 0 0 0 0]
[ 0 0 0 0 0 0 67 114 72 114 163 227 254 225 254 254 254 250 229 254 254 140 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 17 66 14 67 67 67 59 21 236 254 106 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 253 209 18 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 233 255 83 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 129 254 238 44 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 249 254 62 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133 254 187 5 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 205 248 58 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 254 182 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 251 240 57 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 19 221 254 166 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 3 203 254 219 35 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 38 254 254 77 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 31 224 254 115 1 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 133 254 254 52 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 61 242 254 254 52 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 121 254 254 219 40 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 121 254 207 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
EDIT: I've found out that there's an cv2 for converting an image to that specific array that tensorflow requires, img_to_array(image) . So now I have to know how can "take a picture" of the drawn line by the user and then convert them to an array.
Basically the intent of the program is to use a classification neural network made with tensorflow to recognize the user's drawn digits.
SOLUTION:
1) save the image:
from win32 import win32gui
HWND = self.canvas.winfo_id()
rect = win32gui.GetWindowRect(HWND)
img = ImageGrab.grab(rect)
img = img.resize((28, 28), PIL.Image.ANTIALIAS)
2) convert the image:
img = np.invert(img.convert('L')).ravel()
img = np.split(img, 28)
img = np.array(img)
print("Image:", img, img.shape)
img = img / 255
img = np.array(img)
3) predict the result:
prediction = self.model.predict(img.reshape(1,28,28))
Upvotes: 1
Views: 946
Reputation: 2478
This is how you can read and convert an image to numpy array using PIL (Python Imaging Library or Pillow)-
from PIL import Image
import numpy as np
import sys
try:
# Absolute path to image-
# 'Image.open()' method reads the image file. Pillow can read
# over 30 different file formats
pic = Image.open("/aboslute_path/pic.jpeg")
except IOError:
print("\nCannot open/load file.\n")
sys.exit(1)
# Pillow allows us to get some basic information about the image-
print("\nImage basic information:")
print("Format = {0}, Size = {1}, Mode = {2}".format(
pic.format, pic.size, pic.mode))
# Convert PIL image to numpy array-
pic_np = np.array(pic.getdata()).reshape(pic.size[0], pic.size[1], 3)
Here, 3 signifies RGB or 3 channels. If your image is a single channel, then replace the 3 with 1.
Upvotes: 0
Reputation: 166
If your array is yourarray
, and if I understood your question, does not
arr = np.array(yourarray)
suffice?
Upvotes: 0