Reputation: 3811
Current dataframe
when I do df.columns() this is what I get:
[IN] df.columns
[OUT] Index(['Col1', 'Col2', 'Col3', 'Col4'],
dtype='object', name='SKU')
When I do df.columns SKU is shown as name of columns as shown above.
Dtypes are as below
[IN] df.dtypes
[OUT]
SKU
Col1 float64
Col2 float64
Col3 float64
Col4 float64
dtype: object
Date is the index.
[IN] df.index.name
[OUT] 'Date'
What I want
I want to remove SKU from my dataframe. It is extra on top of date/index in the dataframe as shown in the image.
Upvotes: 2
Views: 967
Reputation: 521
You have to swap the columns and index names and then remove index name:
df.columns.name = df.index.name
df.index.name = None
Upvotes: 0
Reputation: 35
you can do it 1st by removing from csv file but if you want to do via using code just write it down
df = pd.DataFrame({'month': [1, 4, 7, 10],
'year': [2012, 2014, 2013, 2014],
'sale': [55, 40, 84, 31]})
df
month year sale
0 1 2012 55
1 4 2014 40
2 7 2013 84
3 10 2014 31
to
df.set_index('month')
year sale
month
1 2012 55
4 2014 40
7 2013 84
10 2014 31
Visit https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html
Upvotes: 0
Reputation: 863166
You can remove columns name SKU
by DataFrame.rename_axis
:
df = df.rename_axis(None, axis=1)
But I think empty row is not removed, need also remove index name date
:
df = df.rename_axis(None)
Both together:
df = df.rename_axis(index=None, columns=None)
Upvotes: 3