Reputation: 43
As I am newbie to deeper DataFrame operations, I would like to ask, how to find eg. the lowest campaign ID in this DataFrame per every customerid which is in this kind of DataFrame? As I learned, iteration should not be done in DataFrame.
orderid customerid campaignid orderdate city state zipcode paymenttype totalprice numorderlines numunits
0 1002854 45978 2141 2009-10-13 NEWTON MA 02459 VI 190.00 3 3
1 1002855 125381 2173 2009-10-13 NEW ROCHELLE NY 10804 VI 10.00 1 1
2 1002856 103122 2141 2011-06-02 MIAMI FL 33137 AE 35.22 2 2
3 1002857 130980 2173 2009-10-14 E RUTHERFORD NJ 07073 AE 10.00 1 1
4 1002886 48553 2141 2010-11-19 BALTIMORE MD 21218 VI 10.00 1 1
5 1002887 106150 2173 2009-10-15 ROWAYTON CT 06853 AE 10.00 1 1
6 1002888 27805 2173 2009-10-15 INDIANAPOLIS IN 46240 VI 10.00 1 1
7 1002889 24546 2173 2009-10-15 PLEASANTVILLE NY 10570 MC 10.00 1 1
8 1002890 43783 2173 2009-10-15 EAST STROUDSBURG PA 18301 DB 29.68 2 2
9 1003004 15688 2173 2009-10-15 ROUND LAKE PARK IL 60073 DB 19.68 1 1
10 1003044 130970 2141 2010-11-22 BLOOMFIELD NJ 07003 AE 10.00 1 1
11 1003045 40048 2173 2010-11-22 SPRINGFIELD IL 62704 MC 10.00 1 1
12 1003046 21927 2141 2010-11-22 WACO TX 76710 MC 17.50 1 1
13 1003075 130971 2141 2010-11-22 FAIRFIELD NJ 07004 MC 59.80 1 4
14 1003076 7117 2141 2010-11-22 BROOKLYN NY 11228 AE 22.50 1 1
Upvotes: 2
Views: 73
Reputation: 1811
Try the following
df.groupby('customerid')['campaignid'].min()
You can group unique values of customerid
and subsequently find the minimum value per group for a given column using ['column_name'].min()
Upvotes: 2