Reputation: 2413
Is it possible to get the same sample
of integers from Rcpp
as from base R's sample
?
I have tried using Rcpp::sample
and Rcpp::RcppArmadillo::sample
but they do not return the same values -- example code below. Additionally, the Quick Example section of post https://gallery.rcpp.org/articles/using-the-Rcpp-based-sample-implementation/ returns the same sample from Rcpp
and base R, however, I cannot reproduce these results (I attach this code at the end).
Can this be done / what am I doing wrong please?
My attempts:
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
// [[Rcpp::export]]
Rcpp::IntegerVector mysamp1( int n) {
Rcpp::IntegerVector v = Rcpp::sample(n, n);
return v;
}
// [[Rcpp::export]]
Rcpp::IntegerVector mysamp2(int n) {
Rcpp::IntegerVector i = Rcpp::seq(1,n);
Rcpp::IntegerVector v = wrap(Rcpp::RcppArmadillo::sample(i,n,false));
return v;
}
// set seed https://stackoverflow.com/questions/43221681/changing-rs-seed-from-rcpp-to-guarantee-reproducibility
// [[Rcpp::export]]
void set_seed(double seed) {
Rcpp::Environment base_env("package:base");
Rcpp::Function set_seed_r = base_env["set.seed"];
set_seed_r(std::floor(std::fabs(seed)));
}
// [[Rcpp::export]]
Rcpp::IntegerVector mysamp3( int n, int seed) {
set_seed(seed);
Rcpp::IntegerVector v = Rcpp::sample(n, n);
return v;
}
/***R
set.seed(1)
sample(10)
# [1] 9 4 7 1 2 5 3 10 6 8
set.seed(1)
mysamp1(10)
# [1] 3 4 5 7 2 8 9 6 10 1
set.seed(1)
mysamp2(10)
# [1] 3 4 5 7 2 8 9 6 10 1
mysamp3(10, 1)
# [1] 3 4 5 7 2 8 9 6 10 1
*/
Code from the Using the RcppArmadillo-based Implementation of R's sample() gallery post which return FALSE
on my system:
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadilloExtensions/sample.h>
using namespace Rcpp ;
// [[Rcpp::export]]
CharacterVector csample_char( CharacterVector x,
int size,
bool replace,
NumericVector prob = NumericVector::create()) {
CharacterVector ret = RcppArmadillo::sample(x, size, replace, prob) ;
return ret ;
}
/*** R
N <- 10
set.seed(7)
sample.r <- sample(letters, N, replace=T)
set.seed(7)
sample.c <- csample_char(letters, N, replace=T)
print(identical(sample.r, sample.c))
# [1] FALSE
*/
Upvotes: 4
Views: 383
Reputation: 2413
Compiling comments into an answer. Akrun noted that by setting RNGkind
or RNGversion
we can replicate results. From DirkEddelbuettel; there was a "change in R's RNG that came about because someone noticed a bias in, IIRC, use of sampling (at very large N). So thats why you you to turn an option on in R to get the old (matching) behaviour. " And RalfStubner indicates that this is a known issue: https://github.com/RcppCore/RcppArmadillo/issues/250 and https://github.com/RcppCore/Rcpp/issues/945
Presently R uses a different default sampler which leads to different results
RNGkind(sample.kind = "Rejection")
set.seed(1)
sample(10)
# [1] 9 4 7 1 2 5 3 10 6 8
set.seed(1)
mysamp1(10)
# [1] 3 4 5 7 2 8 9 6 10 1
However, an earlier version can be used using
RNGkind(sample.kind = "Rounding")
#Warning message:
# In RNGkind("Mersenne-Twister", "Inversion", "Rounding") : non-uniform 'Rounding' sampler used
set.seed(1)
sample(10)
# [1] 3 4 5 7 2 8 9 6 10 1
set.seed(1)
mysamp1(10)
# [1] 3 4 5 7 2 8 9 6 10 1
Upvotes: 6