AKForrest
AKForrest

Reputation: 66

R: Converting a Wide Table to Narrow with Specific Columns

I have a wide table with 161 variables that I would like to transform into a narrow table with only 13 variables. As far as I can tell, I cannot use pivot_longer because I need to input an additional column for Year, and then only select certain columns from the wide table for each row.

I started with a blank data frame:

subset_gathered <- read.csv(text = "FIPS_State, Place_Code, Place_Name, Longitude, Latitude, County, Closest Metro, Year, Population_Density, Labor Force, Employed, Unemployed, Unemployment Rate", 
                            colClasses = c("character", "integer", "character", "numeric", "numeric", "character", "numeric","integer", "numeric", "integer", "integer", "integer", "numeric") )

and then I tried a for loop to pick up each of the relevant columns (actual solution would repeat for years 1990-2018, which each variable is a different column)

for(i in subset[1:5,]){
  temp1990 <- c(subset$`FIPS State`[i], subset$`Place Code`[i], subset$Name[i], subset$longitude[i], subset$latitude[i], subset$COUNTY[i], subset$closest_metro[i], 1990, subset$density1990[i], subset$`Labor Force.90`[i], subset$Employed.90[i], subset$`Unemployment Level.90`[i], subset$`Unemployment Rate.90`[i])
  subset_gathered[nrow(subset_gathered)+1,]<- temp1990
  temp1991 <- c(subset$`FIPS State`[i], subset$`Place Code`[i], subset$Name[i], subset$longitude[i], subset$latitude[i], subset$COUNTY[i], subset$closest_metro[i], 1991, subset$density1991[i], subset$`Labor Force.91`[i], subset$Employed.91[i], subset$`Unemployment Level.91`[i], subset$`Unemployment Rate.91`[i])
  subset_gathered[nrow(subset_gathered)+1,]<- temp1991
}

I assume the results are wacky because it is running each vector at a time, and not the row

head(subset_gathered)
  FIPS_State Place_Code Place_Name Longitude Latitude County Closest.Metro Year Population_Density Labor.Force
1          1          1          1         1        1    124           124  124                124         124
2          1          1          1         1        1    124           124  124                124         124
3       <NA>       <NA>       <NA>      <NA>     <NA>   <NA>          <NA> <NA>               <NA>        <NA>
4       <NA>       <NA>       <NA>      <NA>     <NA>   <NA>          <NA> <NA>               <NA>        <NA>
5       <NA>       <NA>       <NA>      <NA>     <NA>   <NA>          <NA> <NA>               <NA>        <NA>
6       <NA>       <NA>       <NA>      <NA>     <NA>   <NA>          <NA> <NA>               <NA>        <NA>
        Employed     Unemployed Unemployment.Rate
1 Abbeville city Abbeville city    Abbeville city
2 Abbeville city Abbeville city    Abbeville city
3           <NA>           <NA>              <NA>
4           <NA>           <NA>              <NA>
5           <NA>           <NA>              <NA>
6           <NA>           <NA>              <NA>

If I were to isolate the rows outside of a for loop, I get exactly the results I want:

temp1990 <- c(subset$`FIPS State`[1], subset$`Place Code`[1], subset$Name[1], subset$longitude[1], subset$latitude[1], subset$COUNTY[1], subset$closest_metro[1], 1990, subset$density1990[1], subset$`Labor Force.90`[1], subset$Employed.90[1], subset$`Unemployment Level.90`[1], subset$`Unemployment Rate.90`[1])
subset_gathered[nrow(subset_gathered)+1,]<- temp1990
temp1991 <- c(subset$`FIPS State`[1], subset$`Place Code`[1], subset$Name[1], subset$longitude[1], subset$latitude[1], subset$COUNTY[1], subset$closest_metro[1], 1991, subset$density1991[1], subset$`Labor Force.91`[1], subset$Employed.91[1], subset$`Unemployment Level.91`[1], subset$`Unemployment Rate.91`[1])
subset_gathered[nrow(subset_gathered)+1,]<- temp1991
  FIPS_State Place_Code     Place_Name Longitude  Latitude       County    Closest.Metro Year   Population_Density
1          1        124 Abbeville city  -85.2513 31.567949 Henry County 24.3361834333029 1990 7.85948198868711e-05
2          1        124 Abbeville city  -85.2513 31.567949 Henry County 24.3361834333029 1991 7.96367966656743e-05
  Labor.Force Employed Unemployed Unemployment.Rate
1        6867     6539        328               4.8
2        6648     6106        542               8.2

I then tried to write an apply function, but it returned only a single row, and it should have returned 5 (there are 5 rows with data in subset).

subset_gathered[nrow(subset_gathered)+1,]<- apply(subset, 1, function(x)  c(x[1], x[2], x[3], x[37], x[38], x[41], x[40], 1990, x[7], x[118], x[119], x[120], x[121]))
  FIPS_State Place_Code     Place_Name Longitude Latitude       County Closest.Metro Year Population_Density
1          1        124 Abbeville city -85.25130 31.56795 Henry County      24.33618 1990       7.859482e-05
  Labor.Force Employed Unemployed Unemployment.Rate
1        6867     6539        328               4.8

Am I on the right track here? I think using a for loop would work in Python or SAS, but apply always seems to be the right answer in R, but I still cannot get the results I need.

dput:

subset<- structure(list(`FIPS State` = c(1, 1, 1, 1, 1), `Place Code` = c(124, 
484, 676, 1228, 1396), Name = c("Abbeville city", "Addison town", 
"Akron town", "Aliceville city", "Allgood town"), `1990 Pop` = c(3168, 
639, 468, 3052, 461), GEOID = c(100124, 100484, 100676, 101228, 
101396), USPS = c("AL", "AL", "AL", "AL", "AL"), density1990 = c(7.85948198868711e-05, 
8.31165452653486e-05, 0.000325678496868476, 0.000262064228061137, 
0.000171694599627561), density1991 = c(7.96367966656743e-05, 
8.28563995837669e-05, 0.000329157967988866, 0.000260604499398935, 
0.000176163873370577), density1992 = c(7.89669544507294e-05, 
8.37669094693028e-05, 0.000331941544885177, 0.000259402369912416, 
0.00017877094972067), density1993 = c(7.89421454798055e-05, 8.49375650364204e-05, 
0.000331941544885177, 0.000256568778979907, 0.000183612662942272
), density1994 = c(7.87188647414905e-05, 8.6888657648283e-05, 
0.0003312456506611, 0.000252189592993302, 0.000187709497206704
), density1995 = c(7.77381836037938e-05, 7.39452771986497e-05, 
0.000332684436284319, 0.000248944989340191, 0.000195857866765266
), density1996 = c(7.63486725020343e-05, 7.4934144204278e-05, 
0.000334772413917902, 0.000251349425249651, 0.000203304933942652
), density1997 = c(7.62246090108058e-05, 7.54835147629603e-05, 
0.000334772413917902, 0.000249460225606504, 0.000213358474632124
), density1998 = c(7.60012947265945e-05, 7.58131370981698e-05, 
0.000338252376640541, 0.0002473134078302, 0.000222667308603857
), density1999 = c(7.51328502879948e-05, 7.66921299920616e-05, 
0.000338948369185069, 0.000244479608365479, 0.000230859082498983
), density2000 = c(7.41651550564123e-05, 7.66921299920616e-05, 
0.000339644361729597, 0.000225673484645058, 0.000246497923571494
), density2001 = c(7.29741455406185e-05, 7.7021752327271e-05, 
0.000329204473561679, 0.000225244121089797, 0.000245008510136017
), density2002 = c(7.21801391967559e-05, 7.77908711094264e-05, 
0.00031598061521565, 0.000224900630245588, 0.000243891450059409
), density2003 = c(7.15101963441219e-05, 7.84501157798452e-05, 
0.000307628704681315, 0.000221637467225606, 0.00024351909670054
), density2004 = c(7.08898788879792e-05, 7.93291086737371e-05, 
0.00029649282396887, 0.000220091758426668, 0.000242029683265062
), density2005 = c(7.00527969547999e-05, 7.47440401111995e-05, 
0.000233954174226123, 0.000214997442884744, 0.000239751372251362
), density2006 = c(6.97298585291218e-05, 7.59743946809311e-05, 
0.000227205496123447, 0.00021432028558432, 0.000239007957143606
), density2007 = c(6.91585059298451e-05, 7.68971606082299e-05, 
0.000222143987546439, 0.000212881326320918, 0.00023826454203585
), density2008 = c(6.8115166400731e-05, 7.71022197031852e-05, 
0.000215957699285652, 0.000212542747670706, 0.000237149419374215
), density2009 = c(6.7419606714655e-05, 7.78199265355286e-05, 
0.000207521851657307, 0.000211103788407304, 0.000234547466497069
), density2010 = c(6.67737298632987e-05, 7.7717396988051e-05, 
0.00020021078371274, 0.00021042663110688, 0.000231202098512166
), density2011 = c(6.65004742723402e-05, 7.69996901557075e-05, 
0.000194024495451953, 0.000205347951353697, 0.000231573806066044
), density2012 = c(6.53080846167217e-05, 7.62819207541575e-05, 
0.000194238820289117, 0.000205286788530157, 0.000231202012572632
), density2013 = c(6.48857660254055e-05, 7.61794069120457e-05, 
0.00019198677599591, 0.000202371348887106, 0.00023083030515692
), density2014 = c(6.44634620351942e-05, 7.58718184588342e-05, 
0.000190860753849307, 0.000200340867125697, 0.000231202012572632
), density2015 = c(6.42895721568719e-05, 7.53591710368151e-05, 
0.000189734731702703, 0.000199579436465168, 0.00023083030515692
), density2016 = c(6.39169509890384e-05, 7.52566415524112e-05, 
0.000186919676336194, 0.000198225781957562, 0.00023083030515692
), density2017 = c(6.37430611107161e-05, 7.46414646459882e-05, 
0.000186919781574101, 0.000197548954703759, 0.000231202012572632
), density2018 = c(6.36685368771494e-05, 7.4231339097472e-05, 
0.000185793758793534, 0.000194672438875096, 0.000231202012572632
), minpop = c(2563, 637, 330, 2301, 461), longitude = c(-85.2513, 
-87.177851, -87.738779, -88.154427, -86.516109), latitude = c(31.567949, 
34.202689, 32.879495, 33.126276, 33.907623), is_metro = c(0, 
0, 0, 0, 0), closest_metro = c(24.3361834333029, 28.0961047219205, 
27.2224172144133, 34.7564812052357, 30.296520864832), COUNTY = c("Henry County", 
"Winston County", "Hale County", "Pickens County", "Blount County"
), COUNTY2 = c(NA_character_, NA_character_, NA_character_, NA_character_, 
NA_character_), `LAUS Code` = c("CN0106700000000", "CN0113300000000", 
"CN0106500000000", "CN0110700000000", "CN0100900000000"), `State FIPS` = c("01", 
"01", "01", "01", "01"), `County FIPS` = c("067", "133", "065", 
"107", "009"), `Labor Force.00` = c(7634, 11687, 6976, 8597, 
25106), Employed.00 = c(7259, 10776, 6557, 7952, 24231), `Unemployment Level.00` = c(375, 
911, 419, 645, 875), `Unemployment Rate.00` = c(4.9, 7.8, 6, 
7.5, 3.5), `Labor Force.01` = c(7542, 10737, 7019, 8440, 25305
), Employed.01 = c(7137, 9732, 6513, 7732, 24393), `Unemployment Level.01` = c(405, 
1005, 506, 708, 912), `Unemployment Rate.01` = c(5.4, 9.4, 7.2, 
8.4, 3.6), `Labor Force.02` = c(7530, 10478, 7054, 8248, 25757
), Employed.02 = c(7075, 9561, 6462, 7569, 24366), `Unemployment Level.02` = c(455, 
917, 592, 679, 1391), `Unemployment Rate.02` = c(6, 8.8, 8.4, 
8.2, 5.4), `Labor Force.03` = c(7494, 10407, 7086, 8138, 25900
), Employed.03 = c(7059, 9418, 6485, 7475, 24702), `Unemployment Level.03` = c(435, 
989, 601, 663, 1198), `Unemployment Rate.03` = c(5.8, 9.5, 8.5, 
8.1, 4.6), `Labor Force.04` = c(7548, 10337, 7049, 8027, 26208
), Employed.04 = c(7122, 9580, 6516, 7416, 25101), `Unemployment Level.04` = c(426, 
757, 533, 611, 1107), `Unemployment Rate.04` = c(5.6, 7.3, 7.6, 
7.6, 4.2), `Labor Force.05` = c(7469, 10365, 7053, 7960, 26446
), Employed.05 = c(7146, 9840, 6669, 7527, 25491), `Unemployment Level.05` = c(323, 
525, 384, 433, 955), `Unemployment Rate.05` = c(4.3, 5.1, 5.4, 
5.4, 3.6), `Labor Force.06` = c(7506, 10591, 7170, 8113, 26770
), Employed.06 = c(7204, 10067, 6792, 7703, 25902), `Unemployment Level.06` = c(302, 
524, 378, 410, 868), `Unemployment Rate.06` = c(4, 4.9, 5.3, 
5.1, 3.2), `Labor Force.07` = c(7540, 10287, 6976, 8015, 26629
), Employed.07 = c(7135, 9712, 6602, 7613, 25780), `Unemployment Level.07` = c(405, 
575, 374, 402, 849), `Unemployment Rate.07` = c(5.4, 5.6, 5.4, 
5, 3.2), `Labor Force.08` = c(7376, 9984, 6991, 7925, 26698), 
    Employed.08 = c(6807, 9120, 6473, 7359, 25453), `Unemployment Level.08` = c(569, 
    864, 518, 566, 1245), `Unemployment Rate.08` = c(7.7, 8.7, 
    7.4, 7.1, 4.7), `Labor Force.09` = c(7132, 9519, 6869, 8042, 
    26480), Employed.09 = c(6334, 7832, 5890, 6942, 23832), `Unemployment Level.09` = c(798, 
    1687, 979, 1100, 2648), `Unemployment Rate.09` = c(11.2, 
    17.7, 14.3, 13.7, 10), `Labor Force.10` = c(7259, 9883, 6445, 
    7699, 24906), Employed.10 = c(6469, 8304, 5473, 6687, 22460
    ), `Unemployment Level.10` = c(790, 1579, 972, 1012, 2446
    ), `Unemployment Rate.10` = c(10.9, 16, 15.1, 13.1, 9.8), 
    `Labor Force.11` = c(7270, 9819, 6296, 7570, 25123), Employed.11 = c(6563, 
    8492, 5426, 6663, 22939), `Unemployment Level.11` = c(707, 
    1327, 870, 907, 2184), `Unemployment Rate.11` = c(9.7, 13.5, 
    13.8, 12, 8.7), `Labor Force.12` = c(7030, 9607, 6212, 7467, 
    24960), Employed.12 = c(6447, 8647, 5499, 6709, 23244), `Unemployment Level.12` = c(583, 
    960, 713, 758, 1716), `Unemployment Rate.12` = c(8.3, 10, 
    11.5, 10.2, 6.9), `Labor Force.13` = c(6954, 9644, 6208, 
    7420, 24887), Employed.13 = c(6421, 8737, 5486, 6727, 23325
    ), `Unemployment Level.13` = c(533, 907, 722, 693, 1562), 
    `Unemployment Rate.13` = c(7.7, 9.4, 11.6, 9.3, 6.3), `Labor Force.14` = c(6775, 
    9630, 6032, 7760, 24527), Employed.14 = c(6267, 8802, 5436, 
    7124, 23023), `Unemployment Level.14` = c(508, 828, 596, 
    636, 1504), `Unemployment Rate.14` = c(7.5, 8.6, 9.9, 8.2, 
    6.1), `Labor Force.15` = c(6718, 9379, 6050, 8011, 24485), 
    Employed.15 = c(6262, 8673, 5580, 7469, 23163), `Unemployment Level.15` = c(456, 
    706, 470, 542, 1322), `Unemployment Rate.15` = c(6.8, 7.5, 
    7.8, 6.8, 5.4), `Labor Force.16` = c(6733, 9548, 5991, 7779, 
    24623), Employed.16 = c(6295, 8872, 5534, 7246, 23298), `Unemployment Level.16` = c(438, 
    676, 457, 533, 1325), `Unemployment Rate.16` = c(6.5, 7.1, 
    7.6, 6.9, 5.4), `Labor Force.17` = c(6713, 9693, 5945, 7718, 
    24725), Employed.17 = c(6385, 9203, 5590, 7302, 23726), `Unemployment Level.17` = c(328, 
    490, 355, 416, 999), `Unemployment Rate.17` = c(4.9, 5.1, 
    6, 5.4, 4), `Labor Force.90` = c(6867, 10482, 6204, 8606, 
    19168), Employed.90 = c(6539, 9241, 5725, 7818, 17955), `Unemployment Level.90` = c(328, 
    1241, 479, 788, 1213), `Unemployment Rate.90` = c(4.8, 11.8, 
    7.7, 9.2, 6.3), `Labor Force.91` = c(6648, 10435, 6111, 8775, 
    19132), Employed.91 = c(6106, 9113, 5547, 7906, 18021), `Unemployment Level.91` = c(542, 
    1322, 564, 869, 1111), `Unemployment Rate.91` = c(8.2, 12.7, 
    9.2, 9.9, 5.8), `Labor Force.92` = c(6762, 10927, 6425, 9052, 
    19553), Employed.92 = c(6231, 9895, 5762, 8061, 18334), `Unemployment Level.92` = c(531, 
    1032, 663, 991, 1219), `Unemployment Rate.92` = c(7.9, 9.4, 
    10.3, 10.9, 6.2), `Labor Force.93` = c(6553, 11880, 6972, 
    9171, 19929), Employed.93 = c(5905, 10978, 6284, 8110, 18868
    ), `Unemployment Level.93` = c(648, 902, 688, 1061, 1061), 
    `Unemployment Rate.93` = c(9.9, 7.6, 9.9, 11.6, 5.3), `Labor Force.94` = c(6395, 
    12306, 7192, 9006, 20263), Employed.94 = c(5911, 11567, 6505, 
    8237, 19408), `Unemployment Level.94` = c(484, 739, 687, 
    769, 855), `Unemployment Rate.94` = c(7.6, 6, 9.6, 8.5, 4.2
    ), `Labor Force.95` = c(6472, 12777, 7129, 8938, 20993), 
    Employed.95 = c(6018, 11981, 6453, 8140, 20055), `Unemployment Level.95` = c(454, 
    796, 676, 798, 938), `Unemployment Rate.95` = c(7, 6.2, 9.5, 
    8.9, 4.5), `Labor Force.96` = c(6440, 13038, 7136, 8877, 
    21631), Employed.96 = c(6004, 12211, 6549, 8041, 20918), 
    `Unemployment Level.96` = c(436, 827, 587, 836, 713), `Unemployment Rate.96` = c(6.8, 
    6.3, 8.2, 9.4, 3.3), `Labor Force.97` = c(6456, 13175, 7392, 
    8824, 22684), Employed.97 = c(6087, 12175, 6823, 8131, 22003
    ), `Unemployment Level.97` = c(369, 1000, 569, 693, 681), 
    `Unemployment Rate.97` = c(5.7, 7.6, 7.7, 7.9, 3), `Labor Force.98` = c(6412, 
    12661, 7368, 8699, 23611), Employed.98 = c(6087, 11934, 6811, 
    8002, 22839), `Unemployment Level.98` = c(325, 727, 557, 
    697, 772), `Unemployment Rate.98` = c(5.1, 5.7, 7.6, 8, 3.3
    ), `Labor Force.99` = c(6428, 12410, 7016, 8577, 23968), 
    Employed.99 = c(6093, 11623, 6488, 7683, 23297), `Unemployment Level.99` = c(335, 
    787, 528, 894, 671), `Unemployment Rate.99` = c(5.2, 6.3, 
    7.5, 10.4, 2.8), `Labor Force.18` = c(6766, 9781, 5991, 7805, 
    25006), `Unemployment Rate.18` = c(6466, 9371, 5686, 7449, 
    24128), `Unemployment Level` = c(300, 410, 305, 356, 878), 
    `Unemployment Rate` = c(4.4, 4.2, 5.1, 4.6, 3.5)), row.names = c(NA, 
5L), class = "data.frame")

Upvotes: 0

Views: 279

Answers (1)

Uwe
Uwe

Reputation: 42544

The difficulty is that the year is encoded in the column names in different ways, some columns use a 4 digit year, some columns a 2 digit year. (In addition, the names of the last 3 columns of subset seem to be misspelled at all.)

The year naming issue can be solved by reshaping all variables to long format, separating and completing the year from the variable names and then reshaping to the requested format:

library(data.table)
library(magrittr)
melt(setDT(subset), 
     id.vars = c("FIPS State", "Place Code", "Name", "longitude", "latitude", 
                 "COUNTY", "closest_metro"),
     measure.vars = patterns("\\d\\d$")) %>% 
  .[, c("variable", "Year") := tstrsplit(variable, "(?<=density)|\\.", perl = TRUE)] %>% 
  .[, Year := lubridate::ymd(Year, truncated = 2L) %>% year()] %>% 
  dcast(... ~ variable)
     FIPS State Place Code           Name longitude latitude        COUNTY closest_metro Year Employed Labor Force
  1:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1990     6539        6867
  2:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1991     6106        6648
  3:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1992     6231        6762
  4:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1993     5905        6553
  5:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1994     5911        6395
 ---                                                                                                              
141:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2014    23023       24527
142:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2015    23163       24485
143:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2016    23298       24623
144:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2017    23726       24725
145:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2018       NA       25006
     Unemployment Level Unemployment Rate      density
  1:                328               4.8 7.859482e-05
  2:                542               8.2 7.963680e-05
  3:                531               7.9 7.896695e-05
  4:                648               9.9 7.894215e-05
  5:                484               7.6 7.871886e-05
 ---                                                  
141:               1504               6.1 2.312020e-04
142:               1322               5.4 2.308303e-04
143:               1325               5.4 2.308303e-04
144:                999               4.0 2.312020e-04
145:                 NA           24128.0 2.312020e-04

Fixing the column names for 2018

The reshaped data show some values for 2018 to appear in the wrong columns or are missing at all. By inspecting subset, it seems that the last 3 columns have been given the wrong column names. This can be fixed by renaming the columns using data.tables's set_names() function beforehand:

library(data.table)
library(magrittr)
setDT(subset) %>% 
  setnames(c("Unemployment Rate.18", "Unemployment Level", "Unemployment Rate"),
           c("Employed.18", "Unemployment Level.18", "Unemployment Rate.18")) %>% 
  melt(id.vars = c("FIPS State", "Place Code", "Name", "longitude", "latitude", 
                   "COUNTY", "closest_metro"),
       measure.vars = patterns("\\d\\d$")) %>% 
  .[, c("variable", "Year") := tstrsplit(variable, "(?<=density)|\\.", perl = TRUE)] %>% 
  .[, Year := lubridate::ymd(Year, truncated = 2L) %>% lubridate::year()] %>% 
  dcast(... ~ variable)
     FIPS State Place Code           Name longitude latitude        COUNTY closest_metro Year Employed Labor Force
  1:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1990     6539        6867
  2:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1991     6106        6648
  3:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1992     6231        6762
  4:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1993     5905        6553
  5:          1        124 Abbeville city -85.25130 31.56795  Henry County      24.33618 1994     5911        6395
 ---                                                                                                              
141:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2014    23023       24527
142:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2015    23163       24485
143:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2016    23298       24623
144:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2017    23726       24725
145:          1       1396   Allgood town -86.51611 33.90762 Blount County      30.29652 2018    24128       25006
     Unemployment Level Unemployment Rate      density
  1:                328               4.8 7.859482e-05
  2:                542               8.2 7.963680e-05
  3:                531               7.9 7.896695e-05
  4:                648               9.9 7.894215e-05
  5:                484               7.6 7.871886e-05
 ---                                                  
141:               1504               6.1 2.312020e-04
142:               1322               5.4 2.308303e-04
143:               1325               5.4 2.308303e-04
144:                999               4.0 2.312020e-04
145:                878               3.5 2.312020e-04

Upvotes: 1

Related Questions