Reputation: 159
I have a 5k x 2 column dataframe called "both". I want to create a new 5k x 1 DataFrame or column (doesn't matter) by replacing any NaN value in one column with the value of the adjacent column.
ex:
Gains Loss
0 NaN NaN
1 NaN -0.17
2 NaN -0.13
3 NaN -0.75
4 NaN -0.17
5 NaN -0.99
6 1.06 NaN
7 NaN -1.29
8 NaN -0.42
9 0.14 NaN
so for example, I need to swap the NaNs in the first column in rows 1 through 5 with the values in the same rows, in second column to get a new df of the following form:
Change
0 NaN
1 -0.17
2 -0.13
3 -0.75
4 -0.17
5 -0.99
6 1.06
how do I tell python to do this??
Upvotes: 4
Views: 5629
Reputation: 14131
You may fill the NaN
values with zeroes and then simply add your columns:
both["Change"] = both["Gains"].fillna(0) + both["Loss"].fillna(0)
Then — if you need it — you may return the resulting zeroes back to NaN
s:
both["Change"].replace(0, np.nan, inplace=True)
The result:
Gains Loss Change 0 NaN NaN NaN 1 NaN -0.17 -0.17 2 NaN -0.13 -0.13 3 NaN -0.75 -0.75 4 NaN -0.17 -0.17 5 NaN -0.99 -0.99 6 1.06 NaN 1.06 7 NaN -1.29 -1.29 8 NaN -0.42 -0.42 9 0.14 NaN 0.14
Finally, if you want to get rid of your original columns, you may drop them:
both.drop(columns=["Gains", "Loss"], inplace=True)
Upvotes: 5
Reputation: 23099
IIUC, we can filter for null values and just sum the columns to make your new dataframe.
cols = ['Gains','Loss']
s = df.isnull().cumsum(axis=1).eq(len(df.columns)).any(axis=1)
# add df[cols].isnull() if you only want to measure the price columns for nulls.
df['prices'] = df[cols].loc[~s].sum(axis=1)
df = df.drop(cols,axis=1)
print(df)
prices
0 NaN
1 -0.17
2 -0.13
3 -0.75
4 -0.17
5 -0.99
6 1.06
7 -1.29
8 -0.42
Upvotes: 0
Reputation: 1393
There are many ways to achieve this. One is using the loc property:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Price1': [np.nan,np.nan,np.nan,np.nan,
np.nan,np.nan,1.06,np.nan,np.nan],
'Price2': [np.nan,-0.17,-0.13,-0.75,-0.17,
-0.99,np.nan,-1.29,-0.42]})
df.loc[df['Price1'].isnull(), 'Price1'] = df['Price2']
df = df.loc[:6,'Price1']
print(df)
Output:
Price1
0 NaN
1 -0.17
2 -0.13
3 -0.75
4 -0.17
5 -0.99
6 1.06
You can see more complex recipes in the Cookbook
Upvotes: 1