Reputation: 764
Here is my data set. I would like to add 5
new columns to mydata
with 5
different conditions.
mydata=data.frame(sub=rep(c(1:4),c(3,4,5,5)),t=c(1:3,1:4,1:5,1:5),
y.val=c(10,20,13,
5,7,8,0,
45,17,25,12,10,
40,0,0,5,8))
mydata
sub t y.val
1 1 1 10
2 1 2 20
3 1 3 13
4 2 1 5
5 2 2 7
6 2 3 8
7 2 4 0
8 3 1 45
9 3 2 17
10 3 3 25
11 3 4 12
12 3 5 10
13 4 1 40
14 4 2 0
15 4 3 0
16 4 4 5
17 4 5 8
I would like to add the following 5 (max of 't' column)
columns as
mydata$It1=ifelse(mydata$t==1 & mydata$y.val>0,1,0)
mydata$It2=ifelse(mydata$t==2 & mydata$y.val>0,1,0)
mydata$It3=ifelse(mydata$t==3 & mydata$y.val>0,1,0)
mydata$It4=ifelse(mydata$t==4 & mydata$y.val>0,1,0)
mydata$It5=ifelse(mydata$t==5 & mydata$y.val>0,1,0)
Here is the expected outcome.
> mydata
sub t y.val It1 It2 It3 It4 It5
1 1 1 10 1 0 0 0 0
2 1 2 20 0 1 0 0 0
3 1 3 13 0 0 1 0 0
4 2 1 5 1 0 0 0 0
5 2 2 7 0 1 0 0 0
6 2 3 8 0 0 1 0 0
7 2 4 0 0 0 0 0 0
8 3 1 45 1 0 0 0 0
9 3 2 17 0 1 0 0 0
10 3 3 25 0 0 1 0 0
11 3 4 12 0 0 0 1 0
12 3 5 10 0 0 0 0 1
13 4 1 40 1 0 0 0 0
14 4 2 0 0 0 0 0 0
15 4 3 0 0 0 0 0 0
16 4 4 5 0 0 0 1 0
17 4 5 8 0 0 0 0 1
I appreciate your help if it can be written as a function using for loop or any other technique.
Upvotes: 3
Views: 1270
Reputation: 39717
You can use sapply
to compare each t
for equality against 1:5
and combine this with an &
of y.val>0
.
within(mydata, It <- +(sapply(1:5, `==`, t) & y.val>0))
# sub t y.val It.1 It.2 It.3 It.4 It.5
#1 1 1 10 1 0 0 0 0
#2 1 2 20 0 1 0 0 0
#3 1 3 13 0 0 1 0 0
#4 2 1 5 1 0 0 0 0
#5 2 2 7 0 1 0 0 0
#6 2 3 8 0 0 1 0 0
#7 2 4 0 0 0 0 0 0
#8 3 1 45 1 0 0 0 0
#9 3 2 17 0 1 0 0 0
#10 3 3 25 0 0 1 0 0
#11 3 4 12 0 0 0 1 0
#12 3 5 10 0 0 0 0 1
#13 4 1 40 1 0 0 0 0
#14 4 2 0 0 0 0 0 0
#15 4 3 0 0 0 0 0 0
#16 4 4 5 0 0 0 1 0
#17 4 5 8 0 0 0 0 1
Upvotes: 3
Reputation: 40171
One purrr
and dplyr
option could be:
map_dfc(.x = 1:5,
~ mydata %>%
mutate(!!paste0("It", .x) := as.integer(t == .x & y.val > 0)) %>%
select(starts_with("It"))) %>%
bind_cols(mydata)
It1 It2 It3 It4 It5 sub t y.val
1 1 0 0 0 0 1 1 10
2 0 1 0 0 0 1 2 20
3 0 0 1 0 0 1 3 13
4 1 0 0 0 0 2 1 5
5 0 1 0 0 0 2 2 7
6 0 0 1 0 0 2 3 8
7 0 0 0 0 0 2 4 0
8 1 0 0 0 0 3 1 45
9 0 1 0 0 0 3 2 17
10 0 0 1 0 0 3 3 25
11 0 0 0 1 0 3 4 12
12 0 0 0 0 1 3 5 10
13 1 0 0 0 0 4 1 40
14 0 0 0 0 0 4 2 0
15 0 0 0 0 0 4 3 0
16 0 0 0 1 0 4 4 5
17 0 0 0 0 1 4 5 8
Or if you want to perform it dynamically according the range in t column:
map_dfc(.x = reduce(as.list(range(mydata$t)), `:`),
~ mydata %>%
mutate(!!paste0("It", .x) := as.integer(t == .x & y.val > 0)) %>%
select(starts_with("It"))) %>%
bind_cols(mydata)
Upvotes: 2
Reputation: 34621
Here's another approach based on multiplying a model matrix by the logical y.val > 0
.
df <- cbind(mydata[1:3], model.matrix(~ factor(t) + 0, mydata)*(mydata$y.val>0))
Which gives:
sub t y.val factor.t.1 factor.t.2 factor.t.3 factor.t.4 factor.t.5
1 1 1 10 1 0 0 0 0
2 1 2 20 0 1 0 0 0
3 1 3 13 0 0 1 0 0
4 2 1 5 1 0 0 0 0
5 2 2 7 0 1 0 0 0
6 2 3 8 0 0 1 0 0
7 2 4 0 0 0 0 0 0
8 3 1 45 1 0 0 0 0
9 3 2 17 0 1 0 0 0
10 3 3 25 0 0 1 0 0
11 3 4 12 0 0 0 1 0
12 3 5 10 0 0 0 0 1
13 4 1 40 1 0 0 0 0
14 4 2 0 0 0 0 0 0
15 4 3 0 0 0 0 0 0
16 4 4 5 0 0 0 1 0
17 4 5 8 0 0 0 0 1
To clean up the names you can do:
names(df) <- sub("factor.t.", "It", names(df), fixed = TRUE)
Upvotes: 3
Reputation: 21284
Here's a tidyverse solution, using pivot_wider
:
library(tidyverse)
mydata %>%
mutate(new_col = paste0("It", t),
y_test = as.integer(y.val > 0)) %>%
pivot_wider(id_cols = c(sub, t, y.val),
names_from = new_col,
values_from = y_test,
values_fill = list(y_test = 0))
sub t y.val It1 It2 It3 It4 It5
<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 10 1 0 0 0 0
2 1 2 20 0 1 0 0 0
3 1 3 13 0 0 1 0 0
4 2 1 5 1 0 0 0 0
5 2 2 7 0 1 0 0 0
6 2 3 8 0 0 1 0 0
7 2 4 0 0 0 0 0 0
8 3 1 45 1 0 0 0 0
9 3 2 17 0 1 0 0 0
10 3 3 25 0 0 1 0 0
11 3 4 12 0 0 0 1 0
12 3 5 10 0 0 0 0 1
13 4 1 40 1 0 0 0 0
14 4 2 0 0 0 0 0 0
15 4 3 0 0 0 0 0 0
16 4 4 5 0 0 0 1 0
17 4 5 8 0 0 0 0 1
Explanation:
new_col
(new column names with "It") and y_test
(y.val
> 0). new_col
values into column names. NA
values with zeros. Upvotes: 2
Reputation: 389235
You could use sapply
/lapply
n <- seq_len(5)
mydata[paste0("It", n)] <- +(sapply(n, function(x) mydata$t==x & mydata$y.val>0))
mydata
# sub t y.val It1 It2 It3 It4 It5
#1 1 1 10 1 0 0 0 0
#2 1 2 20 0 1 0 0 0
#3 1 3 13 0 0 1 0 0
#4 2 1 5 1 0 0 0 0
#5 2 2 7 0 1 0 0 0
#6 2 3 8 0 0 1 0 0
#7 2 4 0 0 0 0 0 0
#8 3 1 45 1 0 0 0 0
#9 3 2 17 0 1 0 0 0
#10 3 3 25 0 0 1 0 0
#11 3 4 12 0 0 0 1 0
#12 3 5 10 0 0 0 0 1
#13 4 1 40 1 0 0 0 0
#14 4 2 0 0 0 0 0 0
#15 4 3 0 0 0 0 0 0
#16 4 4 5 0 0 0 1 0
#17 4 5 8 0 0 0 0 1
mydata$t==x & mydata$y.val>0
returns a logical value of TRUE
/FALSE
based on condition. The +
changes those logical values to 1/0 respectively. (Try +c(FALSE, TRUE)
). It avoids using ifelse
i.e ifelse(condition, 1, 0)
.
Upvotes: 4