Reputation: 13
I have this sample data:
set.seed(25)
xx <- data.table(
year = 2015,
values = iris$Sepal.Length,
score = sample(1:8, nrow(iris), replace = TRUE))
The actual data contains many years and rows. I wanted to grouped the values
column using the cut()
function in base
R
but the result is different from the result generated by LibreOffice Calc (even in MS Office Excel) pivot. This is what I have done so far:
brks <- seq(0, ceiling(max(xx$values)), 0.5)
xx[, bins := cut(values, brks, ordered_result = TRUE)]
xx_binned <- dcast(xx, bins ~ year, length, value.var = "values")
xx_binned <- melt(xx_binned, id.vars = "bins", value.name = "value")
I started at 0
so that it will be consistent if I use different data. In the spreadsheet I also started at 0
as the starting number.
The result of the above codes is this:
bins variable value
1 (4,4.5] 2015 5
2 (4.5,5] 2015 27
3 (5,5.5] 2015 27
4 (5.5,6] 2015 30
5 (6,6.5] 2015 31
6 (6.5,7] 2015 18
7 (7,7.5] 2015 6
8 (7.5,8] 2015 6
This is the result of LibreOffice Calc:
values 2015
4-4.5 15
4.5-5 106
5-5.5 100
5.5-6 142
6-6.5 148
6.5-7 95
7-7.5 25
7.5-8 27
How can I make it the same? I am writing a function converting a spreadsheet tools into R function and I want it to be the same as in the output of the spreadsheet.
Thanks.
Upvotes: 1
Views: 106
Reputation: 39657
You have to sum up the score
not the number of cases to come to the same values.
aggregate(xx$score, list(cut(xx$values, brks, right=FALSE, ordered_result = TRUE)), sum)
# Group.1 x
#1 [4,4.5) 15
#2 [4.5,5) 106
#3 [5,5.5) 100
#4 [5.5,6) 142
#5 [6,6.5) 148
#6 [6.5,7) 95
#7 [7,7.5) 25
#8 [7.5,8) 27
Or updating your code:
library(data.table)
xx <- data.table(xx)
xx[, bins := cut(values, brks, right=FALSE, ordered_result = TRUE)]
dcast(xx, bins ~ year, sum, value.var = "score")
Data:
set.seed(25)
xx <- data.frame(
year = 2015,
values = iris$Sepal.Length,
score = sample(1:8, nrow(iris), replace = TRUE))
brks <- seq(0, ceiling(max(xx$values)), 0.5)
Upvotes: 1