Reputation: 47
I have created a custom Keras Layer. The model compiles fine, but gives me the following error while training:
ValueError: An operation has
None
for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
Is there any implementation error in my custom layer?
class SpatialLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(SpatialLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.bias = None
self.built = True
self.kernelA = self.add_weight(name='kernelA', shape=(input_shape[1]-2, self.output_dim), initializer='uniform', trainable=True)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1]-2, input_shape[1]-2, self.output_dim)
def call(self, inputs):
x_shape = tf.shape(inputs)
top_values, top_indices = tf.nn.top_k(tf.reshape(inputs, (-1,)), 10, sorted=True,)
top_indices = tf.stack(((top_indices // x_shape[1]), (top_indices % x_shape[1])), -1)
top_indices = tf.cast(top_indices, dtype=tf.float32)
t1 = tf.reshape(top_indices, (1,10,2))
t2 = tf.reshape(top_indices, (10,1,2))
result = tf.norm(t1-t2, ord='euclidean', axis=2)
x = tf.placeholder(tf.float32, shape=[None, 10, 10, 1])
tensor_zeros = tf.zeros_like(x)
matrix = tensor_zeros + result
return K.dot(matrix, self.kernelA)
model = applications.VGG16(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
model.layers.pop()
new_custom_layers = model.layers[-1].output
model.layers[-1].trainable = False
new_custom_layers = Conv2D(filters=1, kernel_size=(3, 3))(new_custom_layers)
new_custom_layers = SpatialLayer(output_dim=1)(new_custom_layers)
new_custom_layers = Flatten()(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
new_custom_layers = Dropout(0.5)(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
Any help would be appreciated.
Explanation
The input to my custom Keras Layer is a tensor (?, 12,12,1) that represents a feature map from a given image. For example:
[[147.00 20.14 ... 0 34.2 0 ]
[ 12.00 10.14 ... 0 45.2 0 ]
...
[100.00 60.14 ... 0 34.2 99.1]
[ 90.00 65.14 ... 0 12.2 00.1]]
I want to get the coordinates of the top 10 values from this tensor, for example: (0,0), (10,0) ...., (10,11), i.e., 10 coordinates.
Finally, I want to calculate a distance matrix between the coordinates. I am using euclidean distance. For example:
coord1 coord2 ... coord9 cood10
coord1 0 12.3 13.1 2.3
coord2 1.3 0 3.2 9.1
.
.
.
coord9 4.2 5.2 0 4.2
coor10 1.1 5.6 9.1 0
This matrix (?, 10,10,1) will be the layer output.
Upvotes: 1
Views: 187
Reputation: 86600
You cannot backpropagate through functions that are not differentiable. And your function is not differentiable.
You discarded the values top_values
and kept only integer constants top_indices
.
The only way to use this layer in a model is if everything before it is not trainable. (Or if you find another way of calculating what you want in a differentiable way - this means: operations that must involve the input values)
Upvotes: 2