Reputation: 168
I've got a dataset that when I score needs to be converted from a continuous scale to categorical. Each value will be put into one of those categories at 10 intervals based on the minimum and maximum of that column. So if the minimum = 1 and the maximum = 100 there will be 10 categories so that any value from 1-10 = 1, and 11-20 = 2, 21-30 = 3, ..., 91-100 = 10. Here's what my data looks like
df <- as.data.frame(cbind(test1 = sample(13:52, 15),
test2 = sample(16:131, 15)))
> df
test1 test2
1 44 131
2 26 83
3 74 41
4 6 73
5 83 20
6 63 110
7 23 29
8 42 64
9 41 40
10 10 96
11 2 39
12 14 24
13 67 30
14 51 59
15 66 37
So far I have a function:
trail.bin <- function(data, col, min, max) {
for(i in 1:10) {
for(e in 0:9) {
x <- as.data.table(data)
mult <- (max - min)/10
x[col >= min+(e*mult) & col < min+(i*mult),
col := i]
}
}
return(x)
}
What I'm trying to do is take the minimum and maximum, find what the spacing of intervals would be (mult), then use two loops on a data.table reference syntax. The outcome I'm hoping for is:
df2
test1 test2
1 5 131
2 3 83
3 8 41
4 1 73
5 9 20
6 7 110
7 3 29
8 5 64
9 5 40
10 2 96
11 1 39
12 2 24
13 7 30
14 6 59
15 7 37
Thanks!
Upvotes: 0
Views: 725
Reputation: 388982
You could create a function using cut
library(data.table)
trail.bin <- function(data, col, n) {
data[, (col) := lapply(.SD, cut, n, labels = FALSE), .SDcols = col]
return(data)
}
setDT(df)
trail.bin(df, 'test1', 10)
You can also pass multiple columns
trail.bin(df, c('test1', 'test2'), 10)
Upvotes: 1