Reputation: 115
Please answer,thanks a lot.
Q1: why is the query condition a.id = b.id but only scanned the index of a.id at the beginng? but the number of loop is so big ?
Q2: What does the 'Nested Loop' node do in the explain ?
happydb=# EXPLAIN (ANALYZE,VERBOSE) SELECT b.name FROM a,b WHERE a.id = b.id AND b.id < 10000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
-------------------
Gather (cost=1000.57..174222.54 rows=18002 width=13) (actual time=5.881..3276.311 rows=19998 loops=1)
Output: b.name
Workers Planned: 5
Workers Launched: 5
-> Nested Loop (cost=0.56..171422.34 rows=3600 width=13) (actual time=3.189..3258.998 rows=3333 loops=6)
Output: b.name
Worker 0: actual time=2.591..3259.895 rows=1850 loops=1
Worker 1: actual time=0.180..3251.631 rows=4081 loops=1
Worker 2: actual time=1.344..3261.433 rows=555 loops=1
Worker 3: actual time=8.603..3262.411 rows=3330 loops=1
Worker 4: actual time=0.821..3259.297 rows=4623 loops=1
-> Parallel Seq Scan on public.b (cost=0.00..141721.20 rows=3600 width=17) (actual time=1.020..3223.285 rows=3333 loops
=6)
Output: b.id, b.name
Filter: (b.id < 10000)
Rows Removed by Filter: 2663334
Worker 0: actual time=0.054..3237.921 rows=1850 loops=1
Worker 1: actual time=0.049..3215.862 rows=4081 loops=1
Worker 2: actual time=0.102..3236.592 rows=555 loops=1
Worker 3: actual time=0.296..3235.327 rows=3330 loops=1
Worker 4: actual time=0.055..3188.732 rows=4623 loops=1
-> Index Only Scan using idx_rock_id on public.a (cost=0.56..8.24 rows=1 width=4) (actual time=0.008..0.010 r
ows=1 loops=19998)
Output: a.id
Index Cond: (a.id = b.id)
Heap Fetches: 19998
Worker 0: actual time=0.011..0.011 rows=1 loops=1850
Worker 1: actual time=0.008..0.008 rows=1 loops=4081
Worker 2: actual time=0.044..0.044 rows=1 loops=555
Worker 3: actual time=0.007..0.007 rows=1 loops=3330
Worker 4: actual time=0.006..0.015 rows=1 loops=4623
Planning Time: 0.579 ms
Execution Time: 3277.727 ms
(31 rows)
Finally,according to Laurenz Albe's guidance, the execution plan after adding the index is much better, and the execution time has been greatly reduced.
music=# CREATE INDEX idx_b_id ON b(id);
WARNING: concurrent insert in progress within table "b"
CREATE INDEX
music=# set max_parallel_workers_per_gather = 6;
SET
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT b.name FROM a,b WHERE a.id = b.id AND b.id < 10000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
-------------------
Gather (cost=1388.64..108804.88 rows=20599 width=13) (actual time=1.316..35.770 rows=19998 loops=1)
Output: b.name
Workers Planned: 3
Workers Launched: 3
-> Nested Loop (cost=388.64..105744.98 rows=6645 width=13) (actual time=0.341..27.475 rows=5000 loops=4)
Output: b.name
Worker 0: actual time=0.095..26.337 rows=5365 loops=1
Worker 1: actual time=0.091..26.641 rows=5753 loops=1
Worker 2: actual time=0.101..28.578 rows=3145 loops=1
-> Parallel Bitmap Heap Scan on public.b (cost=388.08..51229.82 rows=6645 width=17) (actual time=0.298..1.265 rows=5000 loops=4)
Output: b.id, b.name
Recheck Cond: (b.id < 10000)
Heap Blocks: exact=31
Worker 0: actual time=0.044..1.111 rows=5365 loops=1
Worker 1: actual time=0.044..1.205 rows=5753 loops=1
Worker 2: actual time=0.049..0.681 rows=3145 loops=1
-> Bitmap Index Scan on idx_b_id (cost=0.00..382.93 rows=20599 width=0) (actual time=1.012..1.012 rows=19998 loops=1)
Index Cond: (b.id < 10000)
-> Index Only Scan using idx_para_select_id on public.a (cost=0.56..8.19 rows=1 width=4) (actual time=0.004..0.004 rows=1 loops=19998)
Output: a.id
Index Cond: (a.id = b.id)
Heap Fetches: 19998
Worker 0: actual time=0.004..0.004 rows=1 loops=5365
Worker 1: actual time=0.003..0.004 rows=1 loops=5753
Worker 2: actual time=0.004..0.004 rows=1 loops=3145
Planning Time: 0.264 ms
Execution Time: 37.025 ms
(27 rows)
Upvotes: 9
Views: 25126
Reputation: 246163
A nested loop join works like this:
PostgreSQL scans the outer table, in this case b
.
For each row found in the outer table, PostgreSQL scans the inner table, in this case a
, for matching rows.
Since there is an index on the join condition on the inner table, PostgreSQL uses an index scan there.
So with a nested loop join, only an index on the join condition on the inner table can be used.
There is also a condition on the scan of the outer table (b.id < 10000
), but that has nothing to do with the join. You don't seem to have an index on that column, so a sequential scan is used.
The large number of executions for the inner loop is explained by the 19998 rows found scanning the outer table: for each of these rows, the inner table gets scanned.
Almost all the execution time is spent on that parallel sequential scan, and most of the rows are discarded, so I assume that the following index will make the query considerably faster:
CREATE INDEX ON b (id);
Upvotes: 20