Reputation: 39
Hello stackoverflow community I would like if someone can guide me a little regarding my next question, I want to make an application that takes a photo when it detects a sheet with 3 marks (black squares in the corners) similar to what a QR would have. I have read a little about opencv that I think could help me more however I am not very clear yet.
Here my example
Upvotes: 2
Views: 217
Reputation: 46680
Once you obtain your binary image, you can find contours and filter using contour approximation and contour area. If the approximated contour has a length of four then it must be a square and if it is within a lower and upper area range then we have detected a mark. We keep a counter of the mark and if there are three marks in the image, we can take the photo. Here's the visualization of the process.
We Otsu's threshold to obtain a binary image with the objects to detect in white.
From here we find contours using cv2.findContours
and filter using contour approximation cv2.approxPolyDP
in addition to contour area cv2.contourArea
.
Detected marks highlighted in teal
I implemented it in Python but you can adapt the same approach
Code
import cv2
# Load image, grayscale, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Find contours and filter using contour approximation and contour area
marks = 0
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
if len(approx) == 4 and area > 250 and area < 400:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (200,255,12), 2)
marks += 1
# Sheet has 3 marks
if marks == 3:
print('Take photo')
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()
Upvotes: 2