Reputation: 637
def stack_plot(data, xtick, col2='project_is_approved', col3='total'):
ind = np.arange(data.shape[0])
plt.figure(figsize=(20,5))
p1 = plt.bar(ind, data[col3].values)
p2 = plt.bar(ind, data[col2].values)
plt.ylabel('Projects')
plt.title('Number of projects aproved vs rejected')
plt.xticks(ind, list(data[xtick].values))
plt.legend((p1[0], p2[0]), ('total', 'accepted'))
plt.show()
def univariate_barplots(data, col1, col2='project_is_approved', top=False):
# Count number of zeros in dataframe python: https://stackoverflow.com/a/51540521/4084039
temp = pd.DataFrame(project_data.groupby(col1)[col2].agg(lambda x: x.eq(1).sum())).reset_index()
# Pandas dataframe grouby count: https://stackoverflow.com/a/19385591/4084039
temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'total':'count'})).reset_index()['total']
temp['Avg'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'Avg':'mean'})).reset_index()['Avg']
temp.sort_values(by=['total'],inplace=True, ascending=False)
if top:
temp = temp[0:top]
stack_plot(temp, xtick=col1, col2=col2, col3='total')
print(temp.head(5))
print("="*50)
print(temp.tail(5))
univariate_barplots(project_data, 'school_state', 'project_is_approved', False)
Error:
SpecificationError Traceback (most recent call last)
<ipython-input-21-2cace8f16608> in <module>()
----> 1 univariate_barplots(project_data, 'school_state', 'project_is_approved', False)
<ipython-input-20-856fcc83737b> in univariate_barplots(data, col1, col2, top)
4
5 # Pandas dataframe grouby count: https://stackoverflow.com/a/19385591/4084039
----> 6 temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'total':'count'})).reset_index()['total']
7 print (temp['total'].head(2))
8 temp['Avg'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'Avg':'mean'})).reset_index()['Avg']
~\AppData\Roaming\Python\Python36\site-packages\pandas\core\groupby\generic.py in aggregate(self, func, *args, **kwargs)
251 # but not the class list / tuple itself.
252 func = _maybe_mangle_lambdas(func)
--> 253 ret = self._aggregate_multiple_funcs(func)
254 if relabeling:
255 ret.columns = columns
~\AppData\Roaming\Python\Python36\site-packages\pandas\core\groupby\generic.py in _aggregate_multiple_funcs(self, arg)
292 # GH 15931
293 if isinstance(self._selected_obj, Series):
--> 294 raise SpecificationError("nested renamer is not supported")
295
296 columns = list(arg.keys())
SpecificationError: **nested renamer is not supported**
Upvotes: 61
Views: 103578
Reputation: 802
Good old rename() and ditching the unwanted new index does the trick as well:
temp["total"] = pd.DataFrame(project_data.groupby("col1", as_index=False)["col2"].agg("count").rename(columns={"col1":"whateveryouwant"})
Upvotes: 0
Reputation: 912
In this specific case you can change
temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'total':'count'})).reset_index()['total']
temp['Avg'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'Avg':'mean'})).reset_index()['Avg']
to the new syntax
temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg(total='count')).reset_index()['total']
temp['Avg'] = pd.DataFrame(project_data.groupby(col1)[col2].agg(Avg='mean')).reset_index()['Avg']
New syntax:
df.groupby(
[columns]
).agg(
new_column_name=("column", aggregation_function)
)
The reason for this is that the new pandas version named aggregation is the recommended replacement for the deprecated dict-of-dicts approach to naming the output of column-specific aggregations (Deprecate groupby.agg() with a dictionary when renaming).
source: https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.25.0.html
Upvotes: 78
Reputation: 679
Info = pd.DataFrame(df.groupby("school_state").agg(Approved=("project_is_approved",lambda x: x.eq(1).sum()),Total=("project_is_approved","count"),Avg=("project_is_approved","mean"))).reset_index().sort_values(by=["Total"],ascending=False).head()
You can break this into individual commands for better readability.
Upvotes: 0
Reputation: 412
I found the way: Instead of going like
g2 = df.groupby(["Description","CustomerID"],as_index=False).agg({'Quantity':{"maxQ":np.max,"minQ":np.min,"meanQ":np.mean}})
g2.columns = ["Description","CustomerID","maxQ","minQ",'meanQ']
Do as follows:
g2 = df.groupby(["Description","CustomerID"],as_index=False).agg({'Quantity':{np.max,np.min,np.mean}})
g2.columns = ["Description","CustomerID","maxQ","minQ",'meanQ']
I had the same error and this is how I resolved it!
Upvotes: 6
Reputation: 4658
Sometimes it's convenient to keep an aggdict
of how each column should be transformed under aggregation that will work with different column sets and different group by columns. You can do this with the new syntax fairly easily by unpacking the dict with **. Here's a minimal working example for simple data.
dfx=pd.DataFrame(columns=["A","B","C"],data=np.random.randint(0,5,size=(10,3)))
#dfx
#
# A B C
#0 4 4 1
#1 2 4 4
#2 1 3 3
#3 2 4 3
#4 1 2 1
#5 0 4 2
#6 2 3 4
#7 1 0 2
#8 2 1 4
#9 3 0 3
Maybe when you agg you want the first "A"
, the last "B"
, the mean "C"
and sometimes your pipeline has a "D"
(but not this time) that you also want the mean of.
aggdict = {"A":lambda x: x.iloc[0], "B": lambda x: x.iloc[-1], "C" : "mean" , "D":lambda x: "mean"}
You can build a simple dict
like the old days and then unpack it with ** filtering on the relevant keys:
gb_col="C"
gbc = dfx.groupby(gb_col).agg(**{k:(k,v) for k,v in aggdict.items() if k in dfx.columns and k != gb_col})
# A B
#C
#1 4 2
#2 0 0
#3 1 4
#4 2 3
And then you can slice and dice how you want with the same syntax:
mygb = lambda gb_col: dfx.groupby(gb_col).agg(**{k:(k,v) for k,v in aggdict.items() if k in dfx.columns and k != gb_col})
allgb = [mygb(c) for c in dfx.columns]
Upvotes: 1
Reputation: 3897
Not a very elegant solution but this one works. As renaming the column is deprecated with the way you are doing. But there is work around. Create a temporary variable 'approved' , store the col2 in it. Because when you apply agg function , the original column values will change with column name. You can preserve the column name but then values in those column will change. So in order to preserve the original dataframe and to have two new columns with desired names, you can use the following code.
approved = temp[col2]
temp = pd.DataFrame(project_data.groupby(col1)[col2].agg([('Avg','mean'),('total','count')]).reset_index())
temp[col2] = approved
P.S : Seems like an assignment of AAIC, I am working on same :)
Upvotes: 1
Reputation: 319
Instead of using .agg({'total':'count'}))
, you can pass name with the function as a list of tuple like .agg([('total', 'count')])
and use the same for Avg
also. Hope it would work.
Upvotes: 3
Reputation: 163
@Rishi's solution worked for me. The original name of the column in my dataframe was net_value_budgeted_rate
, which was essentially dollar value of the sale. I changed it to dollars
and it worked.
Upvotes: 0
Reputation: 3625
This error also happens if a column specified in the aggregation function dict does not exist in the dataframe:
In [190]: group = pd.DataFrame([[1, 2]], columns=['A', 'B']).groupby('A')
In [195]: group.agg({'B': 'mean'})
Out[195]:
B
A
1 2
In [196]: group.agg({'B': 'mean', 'non-existing-column': 'mean'})
...
SpecificationError: nested renamer is not supported
Upvotes: 62
Reputation: 86
I have tried alll the solutions and turned out to be the error with the name. If your column name has some inbuilt keywords such as "in", "is",etc., It is throwing error. In my case, My column name is "Points in Polygon" and I have resolved the issue by renaming the column to "Points"
Upvotes: 0
Reputation: 143
I have got the similar issue as @akshay jindal, but I check the documentation as suggested by @artikay Khanna, the problem solved, some functions has been adjusted, the old is deprecated. Here is the code warning provided per last time execute.
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version. Use named aggregation instead.
>>> grouper.agg(name_1=func_1, name_2=func_2)
"""Entry point for launching an IPython kernel.
Therefore, I will suggest try
grouper.agg(name_1=func_1, name_2=func_2)
Hope this will help
Upvotes: 1
Reputation: 1357
Do you get the same error if you change
temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({'total':'count'})).reset_index()['total']
to
temp['total'] = project_data.groupby(col1)[col2].agg(total=('total','count')).reset_index()['total']
Upvotes: 3