Fatima
Fatima

Reputation: 495

TypeError: float() argument must be a string or a number, not 'tuple' with annotate and iterrows

I want to plot the mean based on month/year

here is a sample of my data and date as index

               mean   count
date        
1901-01-31  0.608475    3
1901-02-28  0.751826    6
1901-03-31  0.050980    6
1901-04-30  0.229060    2
1901-05-31  0.246976    4
1901-11-30  0.936585    8
1901-12-31  0.085918    1
1902-07-31  0.786897    0
1902-08-31  0.774024    9
1902-12-31  0.602361    6
1903-01-31  0.805497    4
1903-02-28  0.604498    7
1903-03-31  0.991389    2
1903-04-30  0.774783    1
1903-05-31  0.880222    9
1903-06-30  0.735544    1

so I wrote this code to groupby by month/year

data=df.groupby([df.index.year.rename('year'),df.index.month.rename('month')]).mean()

and here is a sample of data after group by

               mean   count
date    date        
1901    1   0.468082    7
        2   0.378744    8
        3   0.668791    3
        4   0.563842    7
        5   0.764414    2
        6   0.530849    3
        7   0.703855    7
        8   0.604860    9
        9   0.766420    0
       10   0.752520    8
       11   0.361177    3
       12   0.502622    1
1902    1   0.694125    0
        2   0.661784    0
        3   0.491230    2
        4   0.074626    7
        5   0.291552    4
        6   0.376639    6
        7   0.681985    8
        8   0.381116    6
        9   0.895843    3
       10   0.378515    8
       11   0.803789    8
       12   0.616002    7
   1903 1   0.372718    4
        2   0.992567    9
        3   0.746151    9
        4   0.970088    7
        5   0.053416    1
        6   0.959746    4
        7   0.604006    0
        8   0.894918    0
        9   0.716278    3
       10   0.420532    6
       11   0.161469    7

then I have plot

import matplotlib.pyplot as plt
plt.figure()
ax = data['mean'].plot(figsize=(20,10),linewidth=0.8)
for d,row in data.iterrows():
    ax.annotate('{:.0f}'.format(row['count']), xy=(d,row['mean']), ha='center',clip_on=True)

but I got this error

Error in callback <function install_repl_displayhook.<locals>.post_execute at 0x00000250AD5FDD08> (for post_execute):
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~\Anaconda3\lib\site-packages\matplotlib\pyplot.py in post_execute()
    107             def post_execute():
    108                 if matplotlib.is_interactive():
--> 109                     draw_all()
    110 
    111             # IPython >= 2

~\Anaconda3\lib\site-packages\matplotlib\_pylab_helpers.py in draw_all(cls, force)
    126         for f_mgr in cls.get_all_fig_managers():
    127             if force or f_mgr.canvas.figure.stale:
--> 128                 f_mgr.canvas.draw_idle()
    129 
    130 atexit.register(Gcf.destroy_all)

~\Anaconda3\lib\site-packages\matplotlib\backend_bases.py in draw_idle(self, *args, **kwargs)
   1905         if not self._is_idle_drawing:
   1906             with self._idle_draw_cntx():
-> 1907                 self.draw(*args, **kwargs)
   1908 
   1909     def draw_cursor(self, event):

~\Anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py in draw(self)
    386         self.renderer = self.get_renderer(cleared=True)
    387         with RendererAgg.lock:
--> 388             self.figure.draw(self.renderer)
    389             # A GUI class may be need to update a window using this draw, so
    390             # don't forget to call the superclass.

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\figure.py in draw(self, renderer)
   1707             self.patch.draw(renderer)
   1708             mimage._draw_list_compositing_images(
-> 1709                 renderer, self, artists, self.suppressComposite)
   1710 
   1711             renderer.close_group('figure')

~\Anaconda3\lib\site-packages\matplotlib\image.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    133     if not_composite or not has_images:
    134         for a in artists:
--> 135             a.draw(renderer)
    136     else:
    137         # Composite any adjacent images together

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\axes\_base.py in draw(self, renderer, inframe)
   2643             renderer.stop_rasterizing()
   2644 
-> 2645         mimage._draw_list_compositing_images(renderer, self, artists)
   2646 
   2647         renderer.close_group('axes')

~\Anaconda3\lib\site-packages\matplotlib\image.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    133     if not_composite or not has_images:
    134         for a in artists:
--> 135             a.draw(renderer)
    136     else:
    137         # Composite any adjacent images together

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\text.py in draw(self, renderer)
   2353             return
   2354 
-> 2355         xy_pixel = self._get_position_xy(renderer)
   2356         if not self._check_xy(renderer, xy_pixel):
   2357             return

~\Anaconda3\lib\site-packages\matplotlib\text.py in _get_position_xy(self, renderer)
   1903         "Return the pixel position of the annotated point."
   1904         x, y = self.xy
-> 1905         return self._get_xy(renderer, x, y, self.xycoords)
   1906 
   1907     def _check_xy(self, renderer, xy_pixel):

~\Anaconda3\lib\site-packages\matplotlib\text.py in _get_xy(self, renderer, x, y, s)
   1757 
   1758         if s1 == 'data':
-> 1759             x = float(self.convert_xunits(x))
   1760         if s2 == 'data':
   1761             y = float(self.convert_yunits(y))

TypeError: float() argument must be a string or a number, not 'tuple'

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~\Anaconda3\lib\site-packages\IPython\core\formatters.py in __call__(self, obj)
    339                 pass
    340             else:
--> 341                 return printer(obj)
    342             # Finally look for special method names
    343             method = get_real_method(obj, self.print_method)

~\Anaconda3\lib\site-packages\IPython\core\pylabtools.py in <lambda>(fig)
    242 
    243     if 'png' in formats:
--> 244         png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs))
    245     if 'retina' in formats or 'png2x' in formats:
    246         png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs))

~\Anaconda3\lib\site-packages\IPython\core\pylabtools.py in print_figure(fig, fmt, bbox_inches, **kwargs)
    126 
    127     bytes_io = BytesIO()
--> 128     fig.canvas.print_figure(bytes_io, **kw)
    129     data = bytes_io.getvalue()
    130     if fmt == 'svg':

~\Anaconda3\lib\site-packages\matplotlib\backend_bases.py in print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, **kwargs)
   2054                         orientation=orientation,
   2055                         dryrun=True,
-> 2056                         **kwargs)
   2057                     renderer = self.figure._cachedRenderer
   2058                     bbox_artists = kwargs.pop("bbox_extra_artists", None)

~\Anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py in print_png(self, filename_or_obj, metadata, pil_kwargs, *args, **kwargs)
    525 
    526         else:
--> 527             FigureCanvasAgg.draw(self)
    528             renderer = self.get_renderer()
    529             with cbook._setattr_cm(renderer, dpi=self.figure.dpi), \

~\Anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py in draw(self)
    386         self.renderer = self.get_renderer(cleared=True)
    387         with RendererAgg.lock:
--> 388             self.figure.draw(self.renderer)
    389             # A GUI class may be need to update a window using this draw, so
    390             # don't forget to call the superclass.

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\figure.py in draw(self, renderer)
   1707             self.patch.draw(renderer)
   1708             mimage._draw_list_compositing_images(
-> 1709                 renderer, self, artists, self.suppressComposite)
   1710 
   1711             renderer.close_group('figure')

~\Anaconda3\lib\site-packages\matplotlib\image.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    133     if not_composite or not has_images:
    134         for a in artists:
--> 135             a.draw(renderer)
    136     else:
    137         # Composite any adjacent images together

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\axes\_base.py in draw(self, renderer, inframe)
   2643             renderer.stop_rasterizing()
   2644 
-> 2645         mimage._draw_list_compositing_images(renderer, self, artists)
   2646 
   2647         renderer.close_group('axes')

~\Anaconda3\lib\site-packages\matplotlib\image.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    133     if not_composite or not has_images:
    134         for a in artists:
--> 135             a.draw(renderer)
    136     else:
    137         # Composite any adjacent images together

~\Anaconda3\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     36                 renderer.start_filter()
     37 
---> 38             return draw(artist, renderer, *args, **kwargs)
     39         finally:
     40             if artist.get_agg_filter() is not None:

~\Anaconda3\lib\site-packages\matplotlib\text.py in draw(self, renderer)
   2353             return
   2354 
-> 2355         xy_pixel = self._get_position_xy(renderer)
   2356         if not self._check_xy(renderer, xy_pixel):
   2357             return

~\Anaconda3\lib\site-packages\matplotlib\text.py in _get_position_xy(self, renderer)
   1903         "Return the pixel position of the annotated point."
   1904         x, y = self.xy
-> 1905         return self._get_xy(renderer, x, y, self.xycoords)
   1906 
   1907     def _check_xy(self, renderer, xy_pixel):

~\Anaconda3\lib\site-packages\matplotlib\text.py in _get_xy(self, renderer, x, y, s)
   1757 
   1758         if s1 == 'data':
-> 1759             x = float(self.convert_xunits(x))
   1760         if s2 == 'data':
   1761             y = float(self.convert_yunits(y))

TypeError: float() argument must be a string or a number, not 'tuple'

<Figure size 1440x720 with 1 Axes>

and think maybe the error because of the (group by), if I don't (group by) the data by month and year then plot it as days like this format (1901-01-31) it's worked

so I had tried to ungroup by use .reset_index() but the X label was the indexes of the data and what I want is month/year.

also, I had tried to merge the MultiIndex into one index by use data.index = ['{}-{}'.format(i, j) for i, j in data.index] but i got this erorr ConversionError: Failed to convert value(s) to axis units: '1901-1'

the expected result is similar this but by months/years, not days

enter image description here any help?

Upvotes: 0

Views: 890

Answers (1)

wwii
wwii

Reputation: 23753

Your example DataFrame, ensuring the index is a datetime dtype

#imports excluded
d = {'mean':{'1901-01-31': 0.60847, '1901-02-28': 0.75183, '1901-03-31': 0.05098,
             '1901-04-30': 0.22906, '1901-05-31': 0.24698, '1901-11-30': 0.93659,
             '1901-12-31': 0.08592, '1902-07-31': 0.7869, '1902-08-31': 0.77402,
             '1902-12-31': 0.60236, '1903-01-31': 0.8055, '1903-02-28': 0.6045,
             '1903-03-31': 0.99139, '1903-04-30': 0.77478, '1903-05-31': 0.88022,
             '1903-06-30': 0.73554},
     'count': {'1901-01-31': 3, '1901-02-28': 6, '1901-03-31': 6, '1901-04-30': 2,
               '1901-05-31': 4, '1901-11-30': 8, '1901-12-31': 1, '1902-07-31': 0,
               '1902-08-31': 9, '1902-12-31': 6, '1903-01-31': 4, '1903-02-28': 7,
               '1903-03-31': 2, '1903-04-30': 1, '1903-05-31': 9, '1903-06-30': 1}}


df = pd.DataFrame(d)
df.index = pd.to_datetime(df.index)
#df = df.set_index(pd.to_datetime(df.index))

Axes.annotate's xy argument expects a tuple of two floats. After grouping by year and month; iterating over the rows produces a ((year,month),float) tuple because of the multi-index - annotate doesn't like that.

I haven't figured out how to make your groupby solution work - I think it would involve translating/transforming the (year,month) tuple into a coordinate the plot/axes understands or specifying an x coordinate system that can use that tuple.

Resampling by month, plotting and annotating works

data = df.resample('M').mean()
# or maybe it should be
#data = df.resample('M').agg({'mean':'mean','count':'sum'})

ax = data['mean'].plot()

for x,y,count in zip(data.index,data['mean'],data['count']):
    ax.annotate(f'{count:.0f}',xy=(x,y), ha='center',clip_on=True)

# or
for (x,(y,count)) in data.iterrows():
    ax.annotate(f'{count:.0f}',xy=(x,y), ha='center',clip_on=True)


plt.show()
plt.close()

There were missing months in the example DataFrame so this plot has discontinuities.

Upvotes: 1

Related Questions