Reputation: 187
I have a list with a JSON like so:
print(type(listed)) # <class 'list'>
print (listed)
[
{
"email": "[email protected]",
"fullname": "xg gf",
"points": 5,
"image_url", "https://imgur.com/random.pmg"
},
{
... similar json for the next user and so on
}
]
I'm trying to insert them into my postgres database that has a model like this:
class Users(db.Model):
__tablename__ = 'users'
email = db.Column(db.String(), primary_key=True)
displayName = db.Column(db.String())
image = db.Column(db.String())
points = db.Column(db.Integer())
But I'm quite stuck, I've tried several approaches but none worked, anyone can guide me with an example on how to do it properly?
Upvotes: 1
Views: 6332
Reputation: 8062
Using marshmallow-sqlalchemy
Define schemas
schema.py
from marshmallow import EXCLUDE
from marshmallow_sqlalchemy import ModelSchema
from app import db
class UserSchema(ModelSchema):
class Meta(ModelSchema.Meta):
model = Users
sqla_session = db.session
user_schema_full = UserSchema(only=(
'email',
'displayName',
'image',
'points'
))
utils.py
Exact details below don't matter but create general utility for going from JSON to ORM objects and ORM objects to JSON. schema_partial
used for auto generated primary keys.
def loadData(data, schema_partial, many=False,
schema_full=None, instance=None):
try:
if instance is not None:
answer = schema_full.load(data, instance=instance, many=many)
else:
answer = schema_partial.load(data, many=many)
except ValidationError as errors:
raise InvalidData(errors, status_code=400)
return answer
def loadUser(data, instance=None, many=False):
return loadData(data=data,
schema_partial=user_schema_full,
many=many,
schema_full=user_schema_full,
instance=instance)
def dumpData(load_object, schema, many=False):
try:
answer = schema.dump(load_object, many=many)
except ValidationError as errors:
raise InvalidDump(errors, status_code=400)
return answer
def dumpUser(load_object, many=False):
return dumpData(load_object, schema=user_schema_full, many=many)
Use loadUser
and dumpUser
within api to produce clean flat code.
api.py
@app.route('/users/', methods=['POST'])
def post_users():
"""Post many users"""
users_data = request.get_json()
users = loadUser(users_data, many=True)
for user in users:
db.session.add(user)
object_dump = dumpUser(users, many=True)
db.session.commit()
return jsonify(object_dump), 201
Upvotes: 1
Reputation: 1627
Here's a solution without pandas, using SQLAlchemy Core
create engine
engine = sqlalchemy.create_engine('...')
load the metadata using the engine as the bind parameter
metadata = sqalchemy.Metadata(bind=engine)
make a reference to the table
users_table = sqlalchemy.Table('users', metadata, autoload = True)
you can then start your inserts
for user in json:
query = users_table.insert()
query.values(**user)
my_session = Session(engine)
my_session.execute(query)
my_session.close()
This creates a session for every user in json, but I thought you might like it anyway. Its very flexible and works for any table, you don't even need a model. Just make sure the json doesnt contain any columns that dont exist in the db (this means you will need to use "img_url" (column name) in both the json key and in the db column name)
Upvotes: 2
Reputation: 640
Here is an example json list, like you provided.
json = [
{
"email": "[email protected]",
"fullname": "xg gf",
"points": 5,
"image_url": "https://imgur.com/random.pmg"
},
{
"email": "[email protected]",
"fullname": "o g",
"points": 7,
"image_url": "https://imgur.com/random_x.pmg"
}
]
Now create an empty dataframe all_df
and run iterations inside your json list.
Each iteration creates a dataframe with the data from dictionary inside the list, transpose it and append to all_df
.
import pandas as pd
all_df = pd.DataFrame()
for i in json:
df = pd.DataFrame.from_dict(data=i, orient='index').T
all_df = all_df.append(df)
Now you can go ahead create a session to your database and push all_df
all_df.to_sql(con=your_session.bind, name='your_table_name', if_exists='your_preferred_method', index=False)
Upvotes: 1