Reputation: 58831
I have a numpy float array and an int array of the same length. I would like to concatenate them such that the output has the composite dtype (float, int)
. column_stack
ing them together just yields a float64
array:
import numpy
a = numpy.random.rand(5)
b = numpy.random.randint(0, 100, 5)
ab = numpy.column_stack([a, b])
print(ab.dtype)
float64
Any hints?
Upvotes: 4
Views: 441
Reputation: 231530
Create a 'blank' array:
In [391]: dt = np.dtype('f,i')
In [392]: arr = np.zeros(5, dtype=dt)
In [393]: arr
Out[393]:
array([(0., 0), (0., 0), (0., 0), (0., 0), (0., 0)],
dtype=[('f0', '<f4'), ('f1', '<i4')])
fill it:
In [394]: arr['f0']=np.random.rand(5)
In [396]: arr['f1']=np.random.randint(0,100,5)
In [397]: arr
Out[397]:
array([(0.40140057, 75), (0.93731374, 99), (0.6226782 , 48),
(0.01068745, 68), (0.19197434, 53)],
dtype=[('f0', '<f4'), ('f1', '<i4')])
There are recfunctions that can be used as well, but it's good to know (and understand) this basic approach.
Upvotes: 2