Reputation: 787
I am working on this challenge:
Sort a Linked list in increasing order by considering two nodes as a two digit number. (in place sorting)
4 ≤ n ≤ 1000
The length of the linked list is always even.
Example 1:
Input
1→3→4→2→1→2Output
1→2→1→3→4→2Explanation:
12 > 13 > 42Example 2:
Input
1→3→0→3Output
0→3→1→3
Here is my linked list template implementation; which anyone can start coding:
class Node():
def __init__(self,val):
self.data = val
self.next = None
class Linkedlist():
def __init__(self):
self.head = None
def add(self,x):
t = Node(x)
t.next = self.head
self.head = t
def display(self):
p = self.head
while p != None:
print(p.data)
p=p.next
def sort(self):
curr = self.head
# your logic here
m = Linkedlist()
m.add(1)
m.add(3)
m.add(4)
m.add(2)
m.add(1)
m.add(2)
m.display()
Which is the algorithm to sort the pairs in a linked list (in place), and how can I code it?
Upvotes: 0
Views: 232
Reputation: 350167
First of all, your current code will not generate list 1→3→4→2→1→2, but its inverse. This is because your definition of the add
method will prepend the given value to the list.
To make add
work correctly, it should first find the last node in the list, and append the new node after it. As this is not a very efficient method to add many values to a list, I would suggest to also define add
as a Node method, and to allow chaining add
calls. That way you can add many values in one chained expression without being inefficient.
Also, as you will need to compare values of pairs, it makes sense to make a method on Node
that will return the value of the pair formed by that node and the next in the list.
Finally, for the sort
algorithm itself, you could reduce the list to its first pair only (which is then obviously sorted), and treat the rest as a separate list of unsorted nodes. Then extract a pair at a time from the unsorted list, and find the right place to inject it in the main list, so that it remains sorted.
This process represents O(n²) time complexity on average and in the worst case. The best case is O(n), which occurs when the list is originally sorted in reverse order.
Here is how that could look:
class Node():
def __init__(self, val):
self.data = val
self.next = None
# Easy chaining: defining this method on a Node as well
def add(self, val):
node = Node(val)
node.next = self.next
self.next = node
return node
# Define how the value of a pair is calculated
def pairvalue(self):
return self.data * 10 + self.next.data
class Linkedlist():
def __init__(self):
self.head = None
def add(self, val):
# Corrected method: addition should be at the end of the list
node = Node(val)
if not self.head:
self.head = node
else: # Look for the last node in the list
curr = self.head
while curr.next:
curr = curr.next
# ...and append the new node after it
curr.next = node
return node # Allow for chaining
def display(self):
p = self.head
while p:
print(p.data, end= "→")
p = p.next
print("NIL")
def sort(self):
if not self.head:
return
# Reduce list to just its first pair
# The remainder is a temporary "todo" list
todo = self.head.next.next
self.head.next.next = None
while todo:
pair = todo # The pair that will be added to the sorted list
todo = todo.next.next
val = pair.pairvalue()
if val < self.head.pairvalue():
# The pair is a minimum: prepend it
pair.next.next = self.head
self.head = pair
else:
curr = self.head.next # odd index
# Find insertion point in sorted list
while curr.next and curr.next.pairvalue() < val:
curr = curr.next.next
# Perform insertion
pair.next.next = curr.next
curr.next = pair
m = Linkedlist()
m.add(1).add(3).add(4).add(2).add(1).add(2)
m.display() # original list
m.sort()
m.display() # final list
The output:
1→3→4→2→1→2→NIL
1→2→1→3→4→2→NIL
Upvotes: 0
Reputation: 7177
First write a function that accepts a linked list of single digit nodes and merges each pair of adjacent single digit nodes into a linked list of half as many nodes, where each node contains a double digit number.
Then sort the resulting linked list using bubble sort, which is O(n^2), or mergesort, which is O(nlogn).
Then, if need be, write a third function that takes apart the double digit nodes and creates a new list of twice as many single digit nodes.
Doing it with two or three functions like this will really simplify the sort.
Upvotes: 1