Reputation: 305
I want to split a dataframe by changing values in the first column and afterward attach the split part in a new column. An example is given below. However, I end up with a list that I can't process back to a handy dataframe.
the desired output should look like df_goal
, which is not yet properly formatted.
#data
x <-c(1,2,3)
y <-c(20200101,20200101,20200101)
z <-c(4.5,5,7)
x_name <- "ID"
y_name <- "Date"
z_name <- "value"
df <-data.frame(x,y,z)
names(df) <- c(x_name,y_name,z_name)
#processing
df$date <-format(as.Date(as.character(df$date), format="%Y%m%d"))
df01 <- split(df, f = df$ID)
#goal
a <-c(1)
b <-c(20200101)
c <-c(4.5)
d <-c(2)
e <-c(20200101)
f <-c(5)
g <-c(3)
h <-c(20200101)
i <-c(7)
df_goal <- data.frame(a,b,c,d,e,f,g,h,i)
Upvotes: 3
Views: 202
Reputation: 39657
You can use Reduce
and cbind
to cbind
each row of a data.frame
in one row and keep the type of the columns.
Reduce(function(x,y) cbind(x, df[y,]), 2:nrow(df), df[1,])
# ID Date value ID Date value ID Date value
#1 1 20200101 4.5 2 20200101 5 3 20200101 7
#Equivalent for the sample dataset: cbind(cbind(df[1,], df[2,]), df[3,])
or do.call
with split
:
do.call(cbind, split(df, 1:nrow(df)))
# 1.ID 1.Date 1.value 2.ID 2.Date 2.value 3.ID 3.Date 3.value
#1 1 20200101 4.5 2 20200101 5 3 20200101 7
#Equivalent for the sample dataset: cbind(df[1,], df[2,], df[3,])
In case you have several rows per ID you can try:
x <- split(df, df$ID)
y <- max(unlist(lapply(x, nrow)))
do.call(cbind, lapply(x, function(i) i[1:y,]))
Upvotes: 3
Reputation: 39858
One option could be:
setNames(Reduce(c, asplit(df, 1)), letters[1:Reduce(`*`, dim(df))])
a b c d e f g h i
1.0 20200101.0 4.5 2.0 20200101.0 5.0 3.0 20200101.0 7.0
Upvotes: 1
Reputation: 113
This is a possible solution for your example :
new_df = data.frame(list(df[1,],df[2,],df[3,]))
And if you want to generalize that on a bigger data.frame :
new_list = list()
for ( i in 1:dim(df)[1] ){
new_list[[i]] = df[i,]
}
new_df = data.frame(new_list)
Upvotes: 1
Reputation: 101327
Maybe you can try the following code
df_goal <- data.frame(t(c(t(df))))
such that
> df_goal
X1 X2 X3 X4 X5 X6 X7 X8 X9
1 1 20200101 4.5 2 20200101 5 3 20200101 7
Upvotes: 0