Reputation: 53
I have a 2D numpy array of zeros representing some flat surface:
field = np.zeros((10,10))
field
Out[165]:
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
Then I have an array of coordinates in the form [row,column]
such as:
In [166]:c = np.array([[1,2],[4,5],[7,3],[2,6]])
In [167]:c
Out[167]:
array([[1, 2],
[4, 5],
[7, 3],
[2, 6]])
What I would like to do is populate a block of the field array around the coordinates in c.
Out[192]:
array([[0., 1., 1., 1., 0., 0., 0., 0., 0., 0.],
[0., 1., 1., 1., 0., 1., 1., 1., 0., 0.],
[0., 1., 1., 1., 0., 1., 1., 1., 0., 0.],
[0., 0., 0., 0., 1., 1., 1., 1., 0., 0.],
[0., 0., 0., 0., 1., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 1., 1., 1., 0., 0., 0.],
[0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],
[0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],
[0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
My initial attempt using numpy vectorization was:
In [168]:field[c[:,0]-1:c[:,0]+1,c[:,1]-1:c[:,1]+1] = 10
Traceback (most recent call last):
File "<ipython-input-168-5433a2f4a5cf>", line 1, in <module>
field[c[:,0]-1:c[:,0]+1,c[:,1]-1:c[:,1]+1] = 10
TypeError: only integer scalar arrays can be converted to a scalar index
I then tried first creating the c[:,0]-1
and c[:,1]+1
arrays before hand but got the same error which leads me to the conclusion that, that type of ranged indexing cannot be done in numpy.
I have also had a look at the np.ix_() but cannot set surrounding blocks of multiple coordinates without a for loop using this method.
I am able to achieve the desired output however using the for loop:
for row,column in c:
field[row-1:row+2,column-1:column+2] = 1
But would not like to use a for loop because both c and f will be large and multidimensional in my final application and I feel I can capitalize on the speed improvements made by numpy vectorization.
Also, I know in image processing this could be seen as a dilation or erosion problem but I already have the coordinates for an erosion/dilation kernel to be placed at and again, multiple dimensions and very large arrays.
Upvotes: 2
Views: 451
Reputation: 249153
Here's a simple way which only has a small amount of Python looping and a lot of vectorized work:
x, y = c[:,0], c[:,1]
for i in -1,0,1:
for j in -1,0,1:
field[x+i,y+j] = 1
A more complicated way which may be faster:
offsets = np.array([[-1,-1],[-1,0],[-1,1], [0,-1],[0,0],[0,1], [1,-1],[1,0],[1,1]])
fill = (offsets + c[:,None]).reshape(-1,2)
field[fill[:,0], fill[:,1]] = 1
Upvotes: 2