Reputation: 165
I have applied visualization to the DNN model, but the image just contains a dense layer Without the value of the input and output layers! The code below explains the visualization process without any error, I tried to show the values of the input and output layers in image.
import pandas as pd
.
.
tf.keras.utils.plot_model
.
.
def create_model():
model = Sequential()
model.add(Input(n_features))
model.add(BatchNormalization())
model.add(Dense(51, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(68, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(85, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(85, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(68, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(51, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_outputs, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='Adam',
metrics=['accuracy'])
tf.keras.utils.plot_model(model, to_file='model_combined.png')
#model.summary()
return model
#I have tried to use
#from keras.utils.vis_utils import plot_model
# but i found this error : TypeError: 'InputLayer' object is not iterable
# so i use the above library to implement visualization without any error.
Please note that I have downloaded all of these libraries: Graphviz, pydot, pydotplus, python-graphviz
Upvotes: 0
Views: 442