Reputation: 81
The goal I am trying to achieve is an expanded data frame in which I will have created a new column for each level of a specific column in R. Here is a sample of the initial data frame and the data frame I am trying to achieve:
Original Data Frame:
record crop_land fishing_ground
BiocapPerCap 1.5 3.4
Consumption 2.3 0.5
Goal Data Frame:
crop_land.BiocapPerCap crop_land.Consumption fishing_ground.BiocapPerCap fishing_ground.Consumption
1.5 2.3 3.4 0.5
Upvotes: 2
Views: 590
Reputation: 39154
We can use pivot_wider
from the tidyr
package as follows.
library(tidyr)
library(magrittr)
dat2 <- dat %>%
pivot_wider(names_from = "record", values_from = c("crop_land", "fishing_ground"),
names_sep = ".")
dat2
# # A tibble: 1 x 4
# crop_land.BiocapPerCap crop_land.Consumption fishing_ground.BiocapPer~ fishing_ground.Consumpti~
# <dbl> <dbl> <dbl> <dbl>
# 1 1.5 2.3 3.4 0.5
DATA
dat <- read.table(text = "record crop_land fishing_ground
BiocapPerCap 1.5 3.4
Consumption 2.3 0.5",
header = TRUE, stringsAsFactors = FALSE)
Upvotes: 1
Reputation: 913
Using tidyr is one option.
tidyr::pivot_longer()
converts crop_land
and fishing_ground
to variable-value pairs. tidyr::unite()
combines the record and variable to new names.
tidyr::pivot_wider()
creates the wide data frame you are after.
library(tidyr)
library(magrittr) # for %>%
tst <- data.frame(
record = c("BiocapPerCap", "Consumption"),
crop_land = c(1.5, 2.3),
fishing_ground = c(3.4, 0.5)
)
pivot_longer(tst, -record) %>%
unite(new_name, record, name, sep = '.') %>%
pivot_wider(names_from = new_name, values_from = value)
Upvotes: 0