Reputation: 3305
I have a network graph.
Each node is a case and each edge is a CPT.
I used community.best_partition
to break the graph into four communities (noted by their colors).
To better visualize the shared CPTs and case volumes in each community I used plt.subplots
and sns.heatmap
to create four heatmaps with similar matching colors between communities.
Code to produce the heatmaps:
fig, axs = plt.subplots(nrows=4, figsize=(16,8), sharex=True)
cmaps = ['Blues', 'Oranges', 'Greens', 'Reds']
comms = range(4)
for ax, cmap, comm in zip(axs, cmaps, comms):
sns.heatmap(
data=_.loc[[comm]],
ax=ax,
cmap=cmap,
annot=True,
annot_kws={
'fontsize' : 12
},
fmt='g',
cbar=False,
robust=True,
)
ax.set_ylabel('Community')
ax.set_xlabel('');
Question
Is there a way in sns.heatmap
to specify colors by row (in this case, community) without having to create 4 separate heatmaps?
Here is some sample data:
cpt 52320 52353 52310 49568 50432 52234 52317 50435 52354 52332
comm
0 NaN 3.0 NaN 1.0 1.0 NaN 2.0 2.0 NaN 3.0
1 1.0 30.0 NaN NaN NaN 1.0 NaN NaN NaN 20.0
2 NaN NaN 160.0 NaN NaN NaN NaN NaN NaN NaN
3 NaN 7.0 NaN NaN NaN NaN NaN NaN 1.0 12.0
Upvotes: 1
Views: 1943
Reputation: 40747
I don't think you can do that using seaborn's heatmap, but you can recreate the output using imshow()
d = """ 52320 52353 52310 49568 50432 52234 52317 50435 52354 52332
0 NaN 3.0 NaN 1.0 1.0 NaN 2.0 2.0 NaN 3.0
1 1.0 30.0 NaN NaN NaN 1.0 NaN NaN NaN 20.0
2 NaN NaN 160.0 NaN NaN NaN NaN NaN NaN NaN
3 NaN 7.0 NaN NaN NaN NaN NaN NaN 1.0 12.0"""
df = pd.read_csv(StringIO(d), sep='\\s+')
N_communities = df.index.size
N_cols = df.columns.size
cmaps = ['Blues', 'Oranges', 'Greens', 'Reds']
fig, ax = plt.subplots()
for i,((idx,row),cmap) in enumerate(zip(df.iterrows(), cmaps)):
ax.imshow(np.vstack([row.values, row.values]), aspect='auto', extent=[-0.5,N_cols-0.5,i,i+1], cmap=cmap)
for j,val in enumerate(row.values):
vmin, vmax = row.agg(['min','max'])
vmid = (vmax-vmin)/2
if not np.isnan(val):
ax.annotate(val, xy=(j,i+0.5), ha='center', va='center', color='black' if (val<=vmid or vmin==vmax) else 'white')
ax.set_ylim(0,N_communities)
ax.set_xticks(range(N_cols))
ax.set_xticklabels(df.columns, rotation=90, ha='center')
ax.set_yticks(0.5+np.arange(N_communities))
ax.set_yticklabels(df.index)
ax.set_ylabel('Community')
ax.invert_yaxis()
fig.tight_layout()
Upvotes: 5