Reputation: 1590
I am trying to set up the aspect ratio for 3D plots using Matplotlib. Following the answer for this question: Setting aspect ratio of 3D plot
I kind of applied the solution as:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
def get_proj(self):
"""
Create the projection matrix from the current viewing position.
elev stores the elevation angle in the z plane
azim stores the azimuth angle in the (x, y) plane
dist is the distance of the eye viewing point from the object point.
"""
# chosen for similarity with the initial view before gh-8896
relev, razim = np.pi * self.elev/180, np.pi * self.azim/180
#EDITED TO HAVE SCALED AXIS
xmin, xmax = np.divide(self.get_xlim3d(), self.pbaspect[0])
ymin, ymax = np.divide(self.get_ylim3d(), self.pbaspect[1])
zmin, zmax = np.divide(self.get_zlim3d(), self.pbaspect[2])
# transform to uniform world coordinates 0-1, 0-1, 0-1
worldM = proj3d.world_transformation(xmin, xmax,
ymin, ymax,
zmin, zmax)
# look into the middle of the new coordinates
R = self.pbaspect / 2
xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
zp = R[2] + np.sin(relev) * self.dist
E = np.array((xp, yp, zp))
self.eye = E
self.vvec = R - E
self.vvec = self.vvec / np.linalg.norm(self.vvec)
if abs(relev) > np.pi/2:
# upside down
V = np.array((0, 0, -1))
else:
V = np.array((0, 0, 1))
zfront, zback = -self.dist, self.dist
viewM = proj3d.view_transformation(E, R, V)
projM = self._projection(zfront, zback)
M0 = np.dot(viewM, worldM)
M = np.dot(projM, M0)
return M
Axes3D.get_proj = get_proj
Then I'm creating a sample data and plotting as:
y,z,x = np.meshgrid(range(10),-np.arange(5)[::-1],range(20))
d = np.sin(x)+np.sin(y)+np.sin(z)
iy,ix = 0,-1
iz = -1
fig,ax = plt.subplots(figsize=(5,5),subplot_kw={'projection':'3d'})
ax.pbaspect = np.array([1, 1, 1])#np.array([2.0, 1.0, 0.5])
ax.contourf(x[iz], y[iz], d[iz],zdir='z',offset=0)
ax.contourf(x[:,iy,:],d[:,iy,:],z[:,iy,:],zdir='y',offset=y.min())
ax.contourf(d[:,:,ix],y[:,:,ix],z[:,:,ix],zdir='x',offset=x.max())
color = '0.3'
ax.plot(x[0,iy,:],y[0,iy,:],y[0,iy,:]*0,color,linewidth=1,zorder=1e4)
ax.plot(x[:,iy,0]*0+x.max(),y[:,iy,0],z[:,iy,0],color,linewidth=1,zorder=1e4)
ax.plot(x[0,:,ix],y[0,:,ix],y[0,:,ix]*0,color,linewidth=1,zorder=1e4)
ax.plot(x[:,0,ix],y[:,0,ix]*0+y.min(),z[:,0,ix],color,linewidth=1,zorder=1e4)
ax.set(xlim=[x.min(),x.max()],ylim=[y.min(),y.max()],zlim=[z.min(),z.max()])
fig.tight_layout()
If I set the pbaspect parameter as (1,1,1) I obtain:
But If I set it for (2,1,0.5) the axis seems to be correct, but it crops the data somehow:
Even if I let the xlim,ylim and zlim automatic. There is something strange with the aspect too. Something tells me that the the axis as not orthogonal.
Does someone know how to correct the aspect ratio for this? I would also like to know how to avoid the axis being cropped by the figure limits.
I searched on the web so long, but I could not find a better solution for this.
Update:
I tried using less than 1 values for pbaspect as suggested and it gets beter, but still crops the data:
Upvotes: 0
Views: 1276
Reputation: 5730
You can try to change figsize
and adjust subplots margins like below:
fig = plt.figure(figsize=(10,6))
fig.subplots_adjust(left=0.2, right=0.8, top=0.8, bottom=0.2)
ax = fig.gca(projection='3d')
ax.pbaspect = np.array([2, 1, 0.5])
ax.contourf(x[iz], y[iz], d[iz],zdir='z',offset=0)
ax.contourf(x[:,iy,:],d[:,iy,:],z[:,iy,:],zdir='y',offset=y.min())
ax.contourf(d[:,:,ix],y[:,:,ix],z[:,:,ix],zdir='x',offset=x.max())
ax.plot(x[0,iy,:],y[0,iy,:],y[0,iy,:]*0,color,linewidth=1,zorder=1e4)
ax.plot(x[:,iy,0]*0+x.max(),y[:,iy,0],z[:,iy,0],color,linewidth=1,zorder=1e4)
ax.plot(x[0,:,ix],y[0,:,ix],y[0,:,ix]*0,color,linewidth=1,zorder=1e4)
ax.plot(x[:,0,ix],y[:,0,ix]*0+y.min(),z[:,0,ix],color,linewidth=1,zorder=1e4)
plt.show()
Output for (2,1,0.5):
Regarding disappearing graphics there is Matplotlib issue:
The problem occurs due to the reduction of 3D data down to 2D + z-order scalar. A single value represents the 3rd dimension for all parts of 3D objects in a collection. Therefore, when the bounding boxes of two collections intersect, it becomes possible for this artifact to occur. Furthermore, the intersection of two 3D objects (such as polygons or patches) can not be rendered properly in matplotlib’s 2D rendering engine.
Upvotes: 2