Reputation: 41
I have a data frame with decimal and string types. I want to cast all decimal columns as double without naming them. I've tried this without success. Kind of new to spark.
>df.printSchema
root
|-- var1: decimal(38,10) (nullable = true)
|-- var2: decimal(38,10) (nullable = true)
|-- var3: decimal(38,10) (nullable = true)
…
150 more decimal and string columns
I try:
import org.apache.spark.sql.types._
val cols = df.columns.map(x => {
if (x.dataType == DecimalType(38,0)) col(x).cast(DoubleType)
else col(x)
})
I get
<console>:30: error: value dataType is not a member of String
if (x.dataType == DecimalType(38,0)) col(x).cast(DoubleType)
Upvotes: 1
Views: 7804
Reputation: 7316
The issue here is that df.columns
will return a string list containing column names. dataType on the other hand is a member of StructField class. To get the DataType you must use df.schema.fields
instead. This will expose the list of the fields into a Array[StructField]
:
import org.apache.spark.sql.types.{StructField, DecimalType, DoubleType}
import org.apache.spark.sql.functions.col
val df = Seq(
(130, Decimal(122.45), "t1"),
(536, Decimal(1.45), "t2"),
(518, Decimal(0.45), "t3"))
.toDF("ID","decimal","tmp")
df.printSchema
// root
// |-- ID: integer (nullable = false)
// |-- decimal: decimal(38,18) (nullable = true)
// |-- tmp: string (nullable = true)
val decimalSchema = df.schema.fields.map{f =>
f match{
case StructField(name:String, _:DecimalType, _, _) => col(name).cast(DoubleType)
case _ => col(f.name)
}
}
df.select(decimalSchema:_*).printSchema
// root
// |-- ID: integer (nullable = false)
// |-- decimal: double (nullable = true)
// |-- tmp: string (nullable = true)
Map will return a list of columns where DecimalType is replaced with DoubleType.
Upvotes: 7