Reputation: 33
I have a Dataframe and I have one column in data frame name 'Pressure' it has repetitive value and I want categorize it. I have column like this enter image description here
pressure
0.03
0.03
0.03
2.07
2.07
2.07
3.01
3.01
I have tried groupby() method but not able to make a segment column. I think is a easy way in panda can anybody help me in this. I need an output like this enter image description here
Pressue Segment
0.03 1
0.03 1
0.03 1
2.07 2
2.07 2
2.07 2
3.01 3
3.01 3
Thanks in advance
Upvotes: 2
Views: 70
Reputation: 862681
Use factorize
if performance is important:
data["Segment"]= pd.factorize(data["pressure"])[0] + 1
print (data)
pressure Segment
0 0.03 1
1 0.03 1
2 0.03 1
3 2.07 2
4 2.07 2
5 2.07 2
6 3.01 3
7 3.01 3
Performance:
data = pd.DataFrame({'pressure': np.sort(np.random.randint(1000, size=10000)) / 100})
In [312]: %timeit data["pressure"].replace({j: i for i,j in enumerate(data["pressure"].unique(),start=1)}).astype("int")
141 ms ± 3.11 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [313]: %timeit pd.factorize(data["pressure"])[0] + 1
751 µs ± 3.97 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Upvotes: 3
Reputation: 13401
Create dict
with unique values from a column pressure
and label corresponding the same then use replace
d = {j: i for i,j in enumerate(data["Pressure"].unique(),start=1)}
data["Segment"]= data["Pressure"].replace(d).astype("int")
print(data)
Output:
Pressure Segment
0.03 1
0.03 1
0.03 1
2.07 2
2.07 2
2.07 2
3.01 3
3.01 3
Upvotes: 2