Reputation: 196
I have
How can I fill that last matrix efficiently?
So far, I simply run through all the pixels in for loops, but I'm wondering if there is a more efficient way to do it
for i in range(width):
for j in range(height):
pixel_result[j,i] = color_mapping[img[j,i,0],img[j,i,1],img[j,i,2]]
Upvotes: 1
Views: 195
Reputation: 476813
You can implement this by subscripting the color_mapping
:
pixel_result = color_mapping[img[:,:,0], img[:,:,1], img[:,:,2]]
For example if test the performance with:
>>> def f():
... for i in range(width):
... for j in range(height):
... pixel_result[j,i] = color_mapping[img[j,i,0],img[j,i,1],img[j,i,2]]
...
>>> def g():
... pixel_result = color_mapping[img[:,:,0], img[:,:,1], img[:,:,2]]
>>> color_mapping = np.random.randn(256,256,256)
Then for a small image: img = np.random.randint(0, 256, (12, 7, 3))
, we get:
>>> timeit(f, number=10000)
0.5247259399620816
>>> timeit(g, number=10000)
0.032307324931025505
For larger images, like img = np.random.randint(0, 256, (1920, 1080, 3))
, we get:
>>> timeit(f, number=10)
18.934733690926805
>>> timeit(g, number=10)
0.5807857210747898
or for a 72×128 image:
>>> timeit(f, number=100)
0.6014469779329374
>>> timeit(g, number=100)
0.011570235947147012
Upvotes: 1