Reputation: 125
I have a data frame with two columns COL_1 and COL_2.
I want to add one more column COL_3 and COL_3 value will depend on the comparison of COL_1 and COL_2 as per below table.
When both values same COL_3 = Valid
When both values different COL_3 = Invalid
When both value the null COL_3 = null
I tried something below code but it's not working.
df_Input = dataframe.withColumn("COL_3", (col("COL_1") != col("COL_1")), lit("Invalid")).otherwise(lit("valid"))
Upvotes: 0
Views: 665
Reputation: 125
```df = df.withColumn('COL_3',\
when((col("COL_1") == col("COL_2")), 'Valid').\
when((col("COL_1") != col("COL_2")), 'Invalid').\
otherwise(lit("NA")))```
Here I am first adding one column COL_3 and with the help of when function I checked weather COL_1 and COL_2 are equal or differ and I assigned valid and invalid values to COL_3. If COL_1 and COL_2 are blank then it will assign NA to COL_3.
Upvotes: 0
Reputation: 541
first will add col3 with default value using lit
function while reading CSV file
df = spark.read.format("csv").option("header", "true").option("delimiter","|").load('test.csv').withColumn('COL_3',lit('Invalid'))
now will check the condition using when
function
df = df.withColumn('COL_3', when((col("COL_1") == col("COL_1")), 'Valid').when((col("COL_1") == 'null') & (col("COL_2" == 'null')),'null').otherwise(col('COL_3')))
Upvotes: 0