Reputation: 1957
I have mydf
below, which I have sorted on a dummy time
column and the id
:
mydf = pd.DataFrame(
{
'id': ['A', 'B', 'B', 'C', 'A', 'C', 'A'],
'time': [1, 4, 3, 5, 2, 6, 7],
'val': ['a', 'b', 'c', 'd', 'e', 'f', 'g']
}
).sort_values(['id', 'time'], ascending=False)
mydf
id time val
5 C 6 f
3 C 5 d
1 B 4 b
2 B 3 c
6 A 7 g
4 A 2 e
0 A 1 a
I want to add a column (last_val
) which, for each unique id
, holds the latest val
based on the time
column. Entries for which there is no last_val
can be dropped. The output in this example would look like:
mydf
id time val last_val
5 C 6 f d
1 B 4 b c
6 A 7 g e
4 A 2 e a
Any ideas?
Upvotes: 1
Views: 31
Reputation: 863741
Use DataFrameGroupBy.shift
after sort_values(['id', 'time'], ascending=False)
(already in question) and then remove rows with missing values by DataFrame.dropna
:
mydf['last_val'] = mydf.groupby('id')['val'].shift(-1)
mydf = mydf.dropna(subset=['last_val'])
Similar solution, only removed last duplicated rows by id
column:
mydf['last_val'] = mydf.groupby('id')['val'].shift(-1)
mydf = mydf[mydf['id'].duplicated(keep='last')]
print (mydf)
id time val last_val
5 C 6 f d
1 B 4 b c
6 A 7 g e
4 A 2 e a
Upvotes: 2