Reputation: 1865
I have the following catalog and want to use AWS glue to flatten it?
| accountId | resourceId | items |
|-----------|------------|-----------------------------------------------------------------|
| 1 | r1 | [{name: "tool", version: "1.0"}, {name: "app", version: "1.0"}] |
| 1 | r2 | [{name: "tool", version: "2.0"}, {name: "app", version: "2.0"}] |
| 2 | r3 | [{name: "tool", version: "3.0"}, {name: "app", version: "3.0"}] |
I want to flatten it to following:
| accountId | resourceId | name | version |
|-----------|------------|------|---------|
| 1 | r1 | tool | 1.0 |
| 1 | r1 | app | 1.0 |
| 1 | r2 | tool | 2.0 |
| 1 | r2 | app | 2.0 |
| 2 | r3 | tool | 3.0 |
| 2 | r3 | app | 3.0 |
Relationalize.apply
can only flatten the nested items, it can not bring the accountId
and resourceId
to the result, is there a way to solve this?
Upvotes: 2
Views: 1067
Reputation: 32680
In Pyspark, if the structure of the array element was valid JSON like this :
{"name": "tool", "version": "1.0"}
You could have used explode
+ from_json
to parse it to struct
.
But here you need to do some cleansing. One way is using str_to_map
function after you explode the items
column to get a map column. Then explode it again and pivot to get map keys as columns.
df = spark.createDataFrame([
(1, "r1", ['{name: "tool", version: "1.0"}', '{name: "app", version: "1.0"}']),
(1, "r2", ['{name: "tool", version: "2.0"}', '{name: "app", version: "2.0"}']),
(2, "r3", ['{name: "tool", version: "3.0"}', '{name: "app", version: "3.0"}'])
], ["accountId", "resourceId", "items"])
# remove leading and trailing {} and convert to map
sql_expr = "str_to_map(trim(BOTH '{}' FROM items), ',', ':')"
df.withColumn("items", explode(col("items"))) \
.select(col("*"), explode(expr(sql_expr))) \
.groupBy("accountId", "resourceId", "items") \
.pivot("key") \
.agg(first(expr("trim(BOTH '\"' FROM trim(value))"))) \
.drop("items")\
.show()
#+---------+----------+--------+----+
#|accountId|resourceId| version|name|
#+---------+----------+--------+----+
#| 1| r1| 1.0| app|
#| 1| r2| 2.0| app|
#| 2| r3| 3.0|tool|
#| 2| r3| 3.0| app|
#| 1| r2| 2.0|tool|
#| 1| r1| 1.0|tool|
#+---------+----------+--------+----+
Another simple way, if you know all the keys, is to use regexp_extract
to extract the values from the string:
df.withColumn("items", explode(col("items"))) \
.withColumn("name", regexp_extract("items", "name: \"(.+?)\"[,}]", 1)) \
.withColumn("version", regexp_extract("items", "version: \"(.+?)\"[,}]", 1)) \
.drop("items") \
.show()
Upvotes: 2