Reputation: 45921
I have this U-NET implementation:
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.models import *
from tensorflow.python.keras.layers import *
from tensorflow.python.keras.optimizers import *
from tensorflow.python.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.python.keras import backend as keras
def unet(pretrained_weights = None,input_size = (240, 240, 1)):
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = concatenate([drop4,up6], axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(inputs = inputs, outputs = conv10)
model.compile(tf.keras.optimizers.Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])
#model.summary()
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model
When I change its input_size
parameter to (200, 200, 1)
it fails with this error:
A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 25, 25, 512), (None, 24, 24, 512)]
At this line:
merge6 = concatenate([drop4,up6], axis = 3)
I think the problem is related to the size of the filters in Conv2D layers.
Is there any relationship between input_size
and filters size in all Conv2D
layers?
If there is any relationship, I could fix my problem.
Upvotes: 0
Views: 213
Reputation: 1655
The issue is with the interaction between MaxPooling2D
and UpSampling2D
layers, actually. With an input_size
of (200, 200, 1)
, the side length of the output of your layers goes from 200
-> 100
-> 50
-> 25
-> 12
, because MaxPooling2D
rounds the size down. When you use UpSampling2D(size = (2,2))
, it just doubles the dimension and sends 12
-> 24
, which isn't compatible with 25
.
What you need to do is use an upsampling layer that upsamples to a specific shape, not by a specific factor. The way I've done this is to wrap tf.image.resize
in a Lambda
layer.
my_upsampling_layer = Lambda(lambda image: tf.image.resize(image,...
tf.convert_to_tensor(enc_layer.shape[1:3])),output_shape=list(enc_layer.shape[1:]))
enc_layer
would be the corresponding layer on the downslope of the U, since you need to match its size when you're going up the U.
Upvotes: 1