Reputation: 1484
I am trying to impute missing value NA
with interpolation by multiple groups.
I just subset a simple example:
Year ST CC ID MP PS
2002 15 3 3 NA 1.5
2003 15 3 3 NA 1.5
2004 15 3 3 193 1.5
2005 15 3 3 193 1.5
2006 15 3 3 348 1.5
2007 15 3 3 388 1.5
2008 15 3 3 388 1.5
1999 53 33 1 NA 3.4
2000 53 33 1 NA 3.4
2002 53 33 1 NA 2.9
2003 53 33 1 NA 2.6
2004 53 33 1 NA 2.6
2005 53 33 1 170 3.8
2006 53 33 1 170 3.0
2007 53 33 1 330 4.2
2008 53 33 1 330 5.0
I used na.approx()
but got wrong. It seems that my data has missing value in the first observation within each group.
setDT(dt)[, MP_interpolate := na.approx(MP, na.rm = T), .(Year, ST, CC, ID)]
setDT(dt)[, MP_interpolate := if(length(na.omit(MP))<2) MP else na.approx(MP, na.rm=TRUE), .(Year, ST, CC, ID)]
I also tried package imputeTS
but not work.
Both are incorrect. Does it mean using interpolation to impute missing is not a good idea?
I'm not sure which imputation way is better (Do not want to use mean
or median
). I'm thinking about using PS
trend to impute MP
. (Just my thought, not question)
Upvotes: 2
Views: 744
Reputation: 72758
You could try imputeTS::na_kalman
in an ave
. This also extrapolates, what you probably want.
library(imputeTS)
dt$MP.imp <- with(dt, ave(MP, ST, CC, ID, FUN=na_kalman))
# Year ST CC ID MP PS MP.imp
# 1 2001 15 3 3 NA 1.5 193.0000
# 2 2002 15 3 3 NA 1.5 193.0000
# 3 2003 15 3 3 NA 1.5 193.0000
# 4 2004 15 3 3 193 1.5 193.0000
# 5 2005 15 3 3 193 1.5 193.0000
# 6 2006 15 3 3 348 1.5 348.0000
# 7 2007 15 3 3 388 1.5 388.0000
# 8 2008 15 3 3 388 1.5 388.0000
# 9 1999 53 33 1 NA 3.4 170.2034
# 10 2000 53 33 1 NA 3.4 166.3867
# 11 2002 53 33 1 NA 2.9 164.4496
# 12 2003 53 33 1 NA 2.6 165.0018
# 13 2004 53 33 1 NA 2.6 168.6527
# 14 2005 53 33 1 170 3.8 170.0000
# 15 2006 53 33 1 170 3.0 170.0000
# 16 2007 53 33 1 330 4.2 330.0000
# 17 2008 53 33 1 330 5.0 330.0000
You probably want to include year
in the ave
, it wouldn't have worked otherwise in your sample data.
Upvotes: 3
Reputation: 388962
If you have NA
values at the beginning and end of the group, you should use na.rm = FALSE
to get output of the same size as input. With na.rm = TRUE
, the leading and trailing NA
s are removed.
Also, you should not group by year
because that would give you only one observation in a group.
library(data.table)
setDT(dt)
dt[, MP_interpolate := as.integer(zoo::na.approx(MP, na.rm = FALSE)), .(ST, CC, ID)]
data
dt <- structure(list(Year = c(2002L, 2003L, 2004L, 2005L, 2006L, 2007L,
2008L, 1999L, 2000L, 2002L, 2003L, 2004L, 2005L, 2006L, 2007L,
2008L), ST = c(15L, 15L, 15L, 15L, 15L, 15L, 15L, 53L, 53L, 53L,
53L, 53L, 53L, 53L, 53L, 53L), CC = c(3L, 3L, 3L, 3L, 3L, 3L,
3L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L), ID = c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
MP = c(NA, NA, 193L, 193L, 348L, 388L, 388L, NA, NA, NA,
NA, NA, 170L, 170L, 330L, 330L), PS = c(1.5, 1.5, 1.5, 1.5,
1.5, 1.5, 1.5, 3.4, 3.4, 2.9, 2.6, 2.6, 3.8, 3, 4.2, 5)),
class = "data.frame", row.names = c(NA, -16L))
Upvotes: 0