Reputation: 47
Array2[:,0] contains array1 row indexes, array2[:,1] contains array1 element value. I want to get mask same shape as array1 in vectorized way.
array1=
[[0 1 2]
[3 4 5]
[6 7 8]]
array2=
[[0 1]
[1 3]
[1 5]
[2 7]
[2 9]]
Code:
array1 = np.arange(9).reshape(-1,3)
array2 = np.arange(10).reshape(-1,2)
array2[:,0]=[0,1,1,2,2]
print(array1[array2[:, 0]] == array2[:, 1,None])
Result I get:
[[False True False]
[ True False False]
[False False True]
[False True False]
[False False False]]
The result I want to get:
[[False True False]
[ True False True]
[False True False]
Edit: The loop solution looks like this:
mask=np.zeros_like(array1)
for (y,x) in array2:
mask[y,(np.where(array1[y,:] == x))] = True
Upvotes: 0
Views: 187
Reputation: 476557
You can perform a mapping back:
array1 = np.arange(9).reshape(-1,3)
array2 = np.arange(10).reshape(-1,2)
array2[:,0] = [0,1,1,2,2]
xs, ys = np.where(array1[array2[:, 0]] == array2[:, 1,None])
mask = np.zeros_like(array1, dtype=bool)
mask[array2[xs,0], ys] = True
This gives us for the given sample data:
>>> mask
array([[False, True, False],
[ True, False, True],
[False, True, False]])
Upvotes: 2