Reputation: 7423
The issue I would like you to figure out is about the coordinantes appearence on matplotlib graph with a double y axis. First of all a code on Jupyter Notebook which draws a graph with two lines and only one y axis (for some unknown reasons I have to run it two times in order to make it working correctly)
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
from IPython.display import display
from IPython.core.display import display, HTML #display multiple output on a cell
display(HTML("<style>.container { width:100% !important; }</style>")) # improve cells horizontal size
from IPython.core.interactiveshell import InteractiveShell # It saves you having to repeatedly type "Display"
InteractiveShell.ast_node_interactivity = "all"
%matplotlib notebook
x = np.arange(0, 10, 0.01)
y1 = np.sin(np.pi*x)/(np.pi*x)
y2 = abs(np.tan(0.1*np.pi*x))
plt.figure()
plt.plot(x, y1)
plt.plot(x, y2)
plt.ylim(0, 3)
plt.grid()
plt.show()
The present figure provides the two lines with cursor coordinates on the right bottom part of the graph.
The following code
import pandas as pd
import os
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
from IPython.display import display
from IPython.core.display import display, HTML #display multiple output on a cell
display(HTML("<style>.container { width:100% !important; }</style>")) # improve cells horizontal size
from IPython.core.interactiveshell import InteractiveShell # It saves you having to repeatedly type "Display"
InteractiveShell.ast_node_interactivity = "all"
%matplotlib notebook
x = np.arange(0, 10, 0.01)
y1 = np.sin(np.pi*x)/(np.pi*x)
y2 = abs(np.tan(0.1*np.pi*x))
# Create some mock data
fig, ax1 = plt.subplots()
plt.grid()
color = 'tab:red'
ax1.set_xlabel('Time (days from 24 February)')
ax1.set_ylabel('Death cases/Intensive care', color=color)
#ax1.set_xlim(0, 15)
#ax1.set_ylim(0, 900)
ax1.plot(x, y1, '-', color=color, label = 'Left hand scale')
ax1.tick_params(axis='y', labelcolor=color)
ax1.legend(loc = 'upper left')
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('Total cases/currently positive', color=color) # we already handled the x-label with ax1
ax2.plot(x, y2, '-', color=color, label = 'Right hand scale')
ax2.set_ylim(0, 20)
ax2.tick_params(axis='y', labelcolor=color)
ax2.legend(loc = 'lower right')
fig.tight_layout()
plt.show()
Shows the following graph
Which shows a graph with TWO y scales, one red on the left side and one blue on the right side. The problem here is that in the left bottom side of the picture there are the cursor coordinates related to the right scale and nothing about the left one. Is there a way to show up both the two scales?
Upvotes: 1
Views: 2170
Reputation: 80329
Depending on your precise needs, mplcursors seems helpful. Mplcursors allows a lot of ways to customize, for example you can show both y-values together with the current x. Or you could suppress the annotation and only write in the status bar.
Setting hover=True
constantly displays the plotted values when the mouse hovers over a curve. Default, the values would only be displayed when clicking.
import matplotlib.pyplot as plt
import numpy as np
import mplcursors
# Create some test data
x = np.arange(0, 10, 0.01)
y1 = np.sin(np.pi * x) / (np.pi * x)
y2 = abs(np.tan(0.1 * np.pi * x))
fig, ax1 = plt.subplots()
plt.grid()
color = 'tab:red'
ax1.set_xlabel('Time (days from 24 February)')
ax1.set_ylabel('Death cases/Intensive care', color=color)
lines1 = ax1.plot(x, y1, '-', color=color, label='Left hand scale')
ax1.tick_params(axis='y', labelcolor=color)
ax1.legend(loc='upper left')
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('Total cases/currently positive', color=color) # we already handled the x-label with ax1
lines2 = ax2.plot(x, y2, '-', color=color, label='Right hand scale')
ax2.set_ylim(0, 20)
ax2.tick_params(axis='y', labelcolor=color)
ax2.legend(loc='lower right')
cursor1 = mplcursors.cursor(lines1, hover=True)
cursor2 = mplcursors.cursor(lines2, hover=True)
fig.tight_layout()
plt.show()
Upvotes: 1