Reputation: 1860
I want to gather reshape wide table to long table. The columns i want to gather have a pattern. For now i only managed to gather them by their position. How can i change this to gather them by the patterns in column names? please only use the gather function.
I have included an example dataset, however in the real dataset there are many more columns. Therefore I would like to gather all columns that:
f
or m
are followed by one OR two numbers
dput(head(test1, 1)) structure(list(startdate = "2019-11-06", id = "POL55", m0_9 = NA_real_, m10_19 = NA_real_, m20_29 = NA_real_, m30_39 = NA_real_, m40_49 = 32, m50_59 = NA_real_, m60_69 = NA_real_, m70 = NA_real_, f0_9 = 32, f10_19 = NA_real_, f20_29 = NA_real_, f30_39 = NA_real_, f40_49 = NA_real_, f50_59 = NA_real_, f60_69 = NA_real_, f70 = NA_real_), row.names = c(NA, -1L), class = c("tbl_df", "tbl", "data.frame"))
df_age2 <- test1 %>% gather(age_cat, count, m0_9:f70 ) df_age2
expected output (there will be many more columns that are not gathered). The count
should of course count...
startdate id age_cat count
<chr> <chr> <chr> <dbl>
1 2019-11-06 POL55 m0_9 NA
2 2019-11-06 POL56 m0_9 NA
3 2019-11-06 POL57 m0_9 NA
4 2019-11-06 POL58 m0_9 NA
5 2019-11-06 POL59 m0_9 NA
6 2019-11-06 POL60 m0_9 NA
7 2019-11-06 POL61 m0_9 NA
8 2019-11-06 POL62 m0_9 NA
9 2019-11-06 POL63 m0_9 NA
10 2019-11-06 POL64 m0_9 NA
Upvotes: 1
Views: 643
Reputation: 887108
We can use pivot_longer
from tidyr
library(dplyr)
library(tidyr)
test1 %>%
pivot_longer(cols = -c(startdate, id), names_to = c('.value', 'grp'), names_sep="_")
Or it could be
test1 %>%
pivot_longer(cols = -c(startdate, id),
names_to = c( '.value', 'grp'), names_pattern = "^([a-z])(.*)")
# A tibble: 8 x 5
# startdate id grp m f
# <chr> <chr> <chr> <dbl> <dbl>
#1 2019-11-06 POL55 0_9 NA 32
#2 2019-11-06 POL55 10_19 NA NA
#3 2019-11-06 POL55 20_29 NA NA
#4 2019-11-06 POL55 30_39 NA NA
#5 2019-11-06 POL55 40_49 32 NA
#6 2019-11-06 POL55 50_59 NA NA
#7 2019-11-06 POL55 60_69 NA NA
#8 2019-11-06 POL55 70 NA NA
Or may be
test1 %>%
pivot_longer(cols = -c(startdate, id),
names_to = c( 'grp', '.value'), names_pattern = "^([a-z])(.*)")
# A tibble: 2 x 11
# startdate id grp `0_9` `10_19` `20_29` `30_39` `40_49` `50_59` `60_69` `70`
# <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 2019-11-06 POL55 m NA NA NA NA 32 NA NA NA
#2 2019-11-06 POL55 f 32 NA NA NA NA NA NA NA
Or it can be
test1 %>%
pivot_longer(cols = matches("^(f|m)\\d+_?\\d*$"), names_to = 'age_bucket',
values_to = 'count')
# A tibble: 16 x 4
# startdate id age_bucket count
# <chr> <chr> <chr> <dbl>
# 1 2019-11-06 POL55 m0_9 NA
# 2 2019-11-06 POL55 m10_19 NA
# 3 2019-11-06 POL55 m20_29 NA
# 4 2019-11-06 POL55 m30_39 NA
# 5 2019-11-06 POL55 m40_49 32
# 6 2019-11-06 POL55 m50_59 NA
# 7 2019-11-06 POL55 m60_69 NA
# 8 2019-11-06 POL55 m70 NA
# 9 2019-11-06 POL55 f0_9 32
#10 2019-11-06 POL55 f10_19 NA
#11 2019-11-06 POL55 f20_29 NA
#12 2019-11-06 POL55 f30_39 NA
#13 2019-11-06 POL55 f40_49 NA
#14 2019-11-06 POL55 f50_59 NA
#15 2019-11-06 POL55 f60_69 NA
#16 2019-11-06 POL55 f70 NA
Upvotes: 3
Reputation: 2364
Use starts_with
:
test1 %>%
gather(age_bucket, count, c(starts_with("m"), starts_with("f")))
Upvotes: 4