Reputation: 627
In the given dataframe,
import pandas as pd
import numexpr as ne
op_d = {'ID': [1, 2,3],'V':['F','G','H'],'AAA':[0,1,1],'E':[20141223,20190201,20170203] ,'D':['2019/02/04','2019/02/01','2019/01/01'],'DD':['2019-12-01','2016-05-31','2015-02-15'],'CurrentRate':[7.5,2,2],'NoteRate':[2,3,3],'BBB':[0,00,4],'Q1':[2,8,00],'Q2':[3,5,7],'Q3':[5,6,8]}
df = pd.DataFrame(data=op_d)
df
if I do pd.to_datetime(df['E'])
, it results in following:
0 1970-01-01 00:00:00.020141223
1 1970-01-01 00:00:00.020190201
2 1970-01-01 00:00:00.020170203
Name: E, dtype: datetime64[ns]
Is this expected behavior ? If this is expected then how can I detect date from Integer field? I know if dtype is object, I can place try except block on the columns and convert them to datetime format.
Upvotes: 0
Views: 91
Reputation: 863116
Here is necessary specify parameter format
- %Y%m%d
means YYMMDD
:
print (pd.to_datetime(df['E'], format='%Y%m%d'))
0 2014-12-23
1 2019-02-01
2 2017-02-03
Name: E, dtype: datetime64[ns]
Upvotes: 5