Reputation: 557
I was running my gated recurrent unit (GRU) model. An after ti was over I had
score = model15.evaluate(X20_test, y20_test)
print('Score: {}'.format(score))
and the output was.
[0.030501108373429363, 0.00272163194425038]
Here is my code for my model:
model20 = Sequential()
model20.add(GRU(units=70, return_sequences=True, input_shape=(1,12),activity_regularizer=regularizers.l2(0.0001)))
model20.add(GRU(units=50, return_sequences=True,dropout=0.1))
model20.add(GRU(units=30, dropout=0.1))
model20.add(Dense(units=5))
model20.add(Dense(units=3))
model20.add(Dense(units=1, activation='relu'))
model20.compile(loss=['mae'], optimizer=Adam(lr=0.0001),metrics=['mse'])
model20.summary()
history20=model20.fit(X20_train, y20_train, batch_size=1000,epochs=25,validation_split=0.1, verbose=1, callbacks=[TensorBoardColabCallback(tbc),Early_Stop])
Is the first number the loss
MAE number for the test data using the model, and the second is the metrics
MSE number for the data data using the model. If so, does this mean lower is better?
Upvotes: 0
Views: 90
Reputation: 36584
The first number is the loss, mae
, for the test data using the model. The second is the metrics. A smaller mae
is always better.
Upvotes: 1