Reputation: 45
for a df
id=c(12,12,13,14,14,15,16,17,18,18)
reg = c('FR','FR','DE','US','US','TZ','MK','GR','ES','ES')
code1=c('F56','G76','G56','T78','G78','G76','G64','T65','G79','G56')
code2=c('G56','I89','J83','S46','D78','G56','H89','G56','W34','T89')
bin1= c(0,1,1,0,1,1,0,0,0,1)
bin2= c(1,0,1,0,0,1,1,1,0,0)
bin3= c(0,0,0,1,1,0,0,1,0,1)
df = data.frame(idnumber,reg,code1,code2, bin1, bin2, bin3)
looks like
id reg code1 code2 bin1 bin2 bin3
12 FR F56 G56 0 1 0
12 FR G76 I89 1 0 0
13 DE G56 J83 1 1 0
14 US T78 S46 0 0 1
14 US G78 D78 1 0 1
15 TZ G76 G56 1 1 0
16 MK G64 H89 0 1 0
17 GR T65 G56 0 1 1
18 ES G79 W34 0 0 0
18 ES G56 T89 1 0 1
I'm trying to count the number if occurrences of a combinations of binary variables (bin1
, bin2
, bin3
) values, aggregated by unique idnumber
, something like:
bin1 bin2 bin3 count
1 1 0 3
1 0 1 2
0 1 0 1
0 1 0 1
any suggestion welcomed! Cheers
Upvotes: 2
Views: 57
Reputation: 46888
If I understood you correctly, you aggregate using something like an OR operator and then count the unique values. Since it is all 0 and 1s to start with, you can get the max of each column when separated by id. Try below in dplyr:
library(dplyr)
df %>%
select(id,bin1,bin2,bin3) %>%
group_by(id) %>%
summarise_all(max) %>%
count(bin1,bin2,bin3)
# A tibble: 4 x 4
bin1 bin2 bin3 n
<dbl> <dbl> <dbl> <int>
1 0 1 0 1
2 0 1 1 1
3 1 0 1 2
4 1 1 0 3
Without installing dplyr, you can do this:
by_id = aggregate(df[,c("bin1","bin2","bin3")],list(id=df$id),max)
aggregate(id~bin1+bin2+bin3,by_id,length)
bin1 bin2 bin3 id
1 0 1 0 1
2 1 1 0 3
3 1 0 1 2
4 0 1 1 1
Upvotes: 2