Reputation: 2306
I know that my problem is trival, however now I'm learing methods how to reshape data in different ways, so please be understanding.
I have data like this:
Input = (
'col1 col2
A 2
B 4
A 7
B 3
A 4
B 2
A 4
B 6
A 3
B 3')
df = read.table(textConnection(Input), header = T)
> df
col1 col2
1 A 2
2 B 4
3 A 7
4 B 3
5 A 4
6 B 2
7 A 4
8 B 6
9 A 3
10 B 3
And I'd like to have something like this, where the column names are not important:
col1 v1 v2 v3 v4 v5
1 A 2 7 4 4 3
2 B 4 3 2 6 3
So far, I did something like:
res_1 <- aggregate(col2 ~., df, toString)
col1 col2
1 A 2, 7, 4, 4, 3
2 B 4, 3, 2, 6, 3
And it actually works, however, I have one column and valiues are comma separated, instead of being in new columns, so I decided to fix it up:
res_2 <- do.call("rbind", strsplit(res_1$col2, ","))
[,1] [,2] [,3] [,4] [,5]
[1,] "2" " 7" " 4" " 4" " 3"
[2,] "4" " 3" " 2" " 6" " 3"
Adn finally combine it and remove unnecessary columns:
final <- cbind(res_1,res_2)
final$col2 <- NULL
col1 1 2 3 4 5
1 A 2 7 4 4 3
2 B 4 3 2 6 3
So I have my desired output, but I'm not satisfied about the method, I'm sure there's one easy and short command for this. As I said I'd like to learn new more elegant options using different packages. Thanks!
Upvotes: 1
Views: 120
Reputation: 269371
The question is tagged with reshape2 and reshape
so we show the use of that package and the base reshape
function. Also the use of dplyr/tidyr is illustrated. Finally we show a data.table solution and a second base R solution using xtabs
.
reshape2 Add a group column and then convert from long to wide form:
library(reshape2)
df2 <- transform(df, group = paste0("v", ave(1:nrow(df), col1, FUN = seq_along)))
dcast(df2, col1 ~ group, value.var = "col2")
giving:
col1 v1 v2 v3 v4 v5
1 A 2 7 4 4 3
2 B 4 3 2 6 3
2) reshape Using df2
from (1) we have the following base R solution using the reshape
function:
wide <- reshape(df2, dir = "wide", idvar = "col1", timevar = "group")
names(wide) <- sub(".*\\.", "", names(wide))
wide
giving:
col1 v1 v2 v3 v4 v5
1 A 2 7 4 4 3
2 B 4 3 2 6 3
3) dplyr/tidyr
library(dplyr)
library(tidyr)
df %>%
group_by(col1) %>%
mutate(group = paste0("v", row_number())) %>%
ungroup %>%
pivot_wider(names_from = "group", values_from = "col2")
giving:
# A tibble: 2 x 6
col1 v1 v2 v3 v4 v5
<fct> <int> <int> <int> <int> <int>
1 A 2 7 4 4 3
2 B 4 3 2 6 3
4) data.table
library(data.table)
as.data.table(df)[, as.list(col2), by = col1]
giving:
col1 V1 V2 V3 V4 V5
1: A 2 7 4 4 3
2: B 4 3 2 6 3
5) xtabs Another base R solution uses df2 from (1) and xtabs
. This produces an object of class c("xtabs", "table")`. Note that it labels the dimensions.
xtabs(col2 ~., df2)
giving:
group
col1 v1 v2 v3 v4 v5
A 2 7 4 4 3
B 4 3 2 6 3
Upvotes: 1
Reputation: 51582
You can simply do,
do.call(rbind, split(df$col2, df$col1))
# [,1] [,2] [,3] [,4] [,5]
#A 2 7 4 4 3
#B 4 3 2 6 3
You can wrap it to data.frame()
to convert from matrix to df
Upvotes: 1