Reputation: 113
I have an image like this: all zero pixels; a square with some non-zero values. I would like to crop the image in order to create a new image with only the non-zero values. I've tried things like image = np.extract(image != 0, image)
or image = image[image != 0]
but those return an array and no more a matrix.
How can I solve?
Thanks
Upvotes: 1
Views: 2794
Reputation: 683
You can use cv.boundingRect
if you don't want to use numpy np.nonzero
.
Also, cv.boundingRect
is faster than numpy (probably because of C++ binding?).
image = np.array([[0,0,0,0,0], [0,0,1,2,0], [0,0,3,3,0], [0,0,0,0,0], [0,0,0,0,0]])
# the line below is usually not necessary when dealing with
# gray scale images opened with imread(), but you need it if
# you're working with the array created above, to get uint8 values
image = cv.convertScaleAbs(image)
x, y, w, h = cv.boundingRect(image)
newImg = image[y:y+h, x:x+w]
In the example above, with an 5x5 array, cv.boundingRect
is 2x faster:
%timeit x, y = np.nonzero(image)
1.4 µs ± 219 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit x, y, w, h = cv.boundingRect(image)
722 ns ± 30.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
With an 1000x1500 image, cv.boundingRect
is very much faster (40x to more than 2000x, depending on the contents of image):
# blank (all zero) image
image = np.zeros((1500,1000), dtype=np.uint8)
%timeit x, y = np.nonzero(image)
6.67 ms ± 40 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit x, y, w, h = cv.boundingRect(image)
159 µs ± 1.14 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
# only non-zero pixels
image = np.ones((1500,1000), dtype=np.uint8)
%timeit x, y = np.nonzero(image)
17.2 ms ± 155 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit x, y, w, h = cv.boundingRect(image)
7.48 µs ± 46.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Numpy is still fast enough if you are dealing with just one image. But things get different when processing live video frames, for example.
Upvotes: 0
Reputation: 6475
As an alternative to @yatu solution, you can use numpy.ix_ which allows to index the cross product of the passed arrays:
import numpy as np
image = np.array([[0,0,0,0,0], [0,0,1,2,0], [0,0,3,3,0], [0,0,0,0,0], [0,0,0,0,0]])
x, y = np.nonzero(image)
image[np.ix_(np.unique(x),np.unique(y))]
array([[1, 2],
[3, 3]])
where
np.ix_(np.unique(x),np.unique(y))
(array([[1],
[2]], dtype=int64), array([[2, 3]], dtype=int64))
Upvotes: 0
Reputation: 88226
One way is using the np.nonzero
and ndarray.reshape
:
x, y = np.nonzero(image)
xl,xr = x.min(),x.max()
yl,yr = y.min(),y.max()
image[xl:xr+1, yl:yr+1]
Using a sample array:
image = np.array([[0,0,0,0,0], [0,0,1,2,0], [0,0,3,3,0], [0,0,0,0,0], [0,0,0,0,0]])
print(image)
array([[0, 0, 0, 0, 0],
[0, 0, 1, 2, 0],
[0, 0, 3, 3, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
x, y = np.nonzero(image)
xl,xr = x.min(),x.max()
yl,yr = y.min(),y.max()
image[xl:xr+1, yl:yr+1]
array([[1, 2],
[3, 3]])
Upvotes: 2