Reputation: 1
I am running a program where I conduct an OLS regression and then I subtract the coefficients from the actual observations to keep the residuals.
model1 = lm(data = final, obs ~ day + poly(temp,2) + prpn + school + lag1) # linear model
predfit = predict(model1, final) # predicted values
residuals = data.frame(final$obs - predfit) # obtain residuals
I want to bootstrap my model and then do the same with the bootstrapped coefficients. I try doing this the following way:
lboot <- lm.boot(model1, R = 1000)
predfit = predict(lboot, final)
residuals = data.frame(final$obs - predfit) # obtain residuals
However, that does not work. I also try:
boot_predict(model1, final, R = 1000, condense = T, comparison = "difference")
and that also does not work.
How can I bootstrap my model and then predict based of that?
Upvotes: 0
Views: 688
Reputation: 983
If you're trying to fit the best OLS using bootstrap, I'd use the caret
package.
library(caret)
#separate indep and dep variables
indepVars = final[,-final$obs]
depVar = final$obs
#train model
ols.train = train(indepVars, depVar, method='lm',
trControl = trainControl(method='boot', number=1000))
#make prediction and get residuals
ols.pred = predict(ols.train, indepVars)
residuals = ols.pred - final$obs
Upvotes: 1