Reputation: 1177
Data looks like this :
data_clean2.head(3)
text target
0 [deed, reason, earthquak, may, allah, forgiv, u] 1
1 [forest, fire, near, la, rong, sask, canada] 1
2 [resid, ask, shelter, place, notifi, offic, evacu, shelter, place, order, expect] 1
I got this by stemming and lemmatizing the sentence and tokenizing before that. ( Hope that is right).
Now I want to use:
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(data_clean2['text'])
It gives me the following error :
AttributeError Traceback (most recent call last)
<ipython-input-140-6f68d1115c5f> in <module>
1 vectorizer = TfidfVectorizer()
----> 2 vectors = vectorizer.fit_transform(data_clean2['text'])
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
1650 """
1651 self._check_params()
-> 1652 X = super().fit_transform(raw_documents)
1653 self._tfidf.fit(X)
1654 # X is already a transformed view of raw_documents so
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
1056
1057 vocabulary, X = self._count_vocab(raw_documents,
-> 1058 self.fixed_vocabulary_)
1059
1060 if self.binary:
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in _count_vocab(self, raw_documents, fixed_vocab)
968 for doc in raw_documents:
969 feature_counter = {}
--> 970 for feature in analyze(doc):
971 try:
972 feature_idx = vocabulary[feature]
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(doc)
350 tokenize)
351 return lambda doc: self._word_ngrams(
--> 352 tokenize(preprocess(self.decode(doc))), stop_words)
353
354 else:
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(x)
254
255 if self.lowercase:
--> 256 return lambda x: strip_accents(x.lower())
257 else:
258 return strip_accents
AttributeError: 'list' object has no attribute 'lower'
I know that I somehow cannot use it on the list, so what is my play here, trying to return the list into a string again?
Upvotes: 0
Views: 214
Reputation: 1640
Yes, first convert to string
using:
data_clean2['text'] = data_clean2['text'].apply(', '.join)
Then use:
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(data_clean2['text'])
v = pd.DataFrame(vectors.toarray(), columns = vectorizer.get_feature_names())
Upvotes: 1